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Supplemental Appendix 

Derivation of the improved Adrogué-Madias (A-M) equation 

See main text under the heading “Savory Math” for details on the variables. The general strategy 

uses an accounting of the total body cationic osmoles (TBCO), the relevant ones being Na! and 

K! for dysnatremia. When an IV fluid is infused, its sodium and potassium amounts are added to 

the numerator of the Edelman fraction, and its volume is added to the denominator. This gives 

the theoretical new serum sodium, or [Na]$. Subtract the initial serum sodium, or [Na]%, to get: 

Δ[Na] = [Na]$ − [Na]% =
Nae +Ke + [Na+K]IVF ⋅ 𝑉

TBW + 𝑉 −
Nae +Ke

TBW
 

Then manipulate equation (4), following the rules of algebra: 

Δ[Na] =
(Nae + Ke + [Na+K]IVF ⋅ 𝑉) ⋅ TBW

(TBW+ 𝑉) ⋅ TBW
−
(Nae +Ke) ⋅ (TBW+ 𝑉)
(TBW+ 𝑉) ⋅ TBW

 

Δ[Na] =
Nae ⋅ TBW+Ke ⋅ TBW+ [Na+K]IVF ⋅ 𝑉 ⋅ TBW

(TBW+ 𝑉) ⋅ TBW
−

Nae ⋅ TBW+Nae ⋅ 𝑉 +Ke ⋅ TBW+ Ke ⋅ 𝑉
(TBW+ 𝑉) ⋅ TBW

 

Δ[Na] =
Nae ⋅ TBW−Nae ⋅ TBW+Ke ⋅ TBW− Ke ⋅ TBW+ [Na+K]IVF ⋅ 𝑉 ⋅ TBW− Nae ⋅ 𝑉 − Ke ⋅ 𝑉

(TBW+ 𝑉) ⋅ TBW
 

Δ[Na] =
[Na+K]IVF ⋅ 𝑉 ⋅ TBW− Nae ⋅ 𝑉 −Ke ⋅ 𝑉

(TBW+ 𝑉) ⋅ TBW
 

Δ[Na] =
[Na+K]IVF ⋅ 𝑉 ⋅ TBW
(TBW+ 𝑉) ⋅ TBW

−
Nae ⋅ 𝑉 +Ke ⋅ 𝑉

(TBW+ 𝑉) ⋅ TBW
 

Δ[Na] =
[Na+K]IVF ⋅ 𝑉

TBW+ 𝑉 −
Nae + Ke

TBW.//0//1
Edelman

⋅
𝑉

TBW+ 𝑉 

Abridge [Na]% to [Na], i.e., the patient’s initial serum sodium, and substitute in [Na] = Nae!Ke
TBW

: 

Δ[Na] =
[Na+K]IVF ⋅ 𝑉

TBW+ 𝑉 − [Na] ⋅
𝑉

TBW+ 𝑉 

Δ[Na] =
[Na+K]IVF ⋅ 𝑉 − [Na] ⋅ 𝑉

TBW + 𝑉  

(4) 
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Δ[Na] =
[Na+K]IVF − [Na]

TBW + 𝑉⏟
any
vol.

⋅ 𝑉3
scaling

step

 

Equation (5) is the improved version of the A-M formula. It accommodates any volume of 

infusate (𝑉), not just one liter, and includes the scaling step (multiply by 𝑉). 

 

Limit calculation proves that the correct scaling prohibits 𝚫[Na] from going to infinity: 

Using just the right-hand side of the improved A-M equation (5), which is the delta [Na], we can 

ask how the serum sodium will change if an extremely large volume of IV fluid is infused. That 

is mathematically equivalent to letting the 𝑉 go to infinity: 

 

The last line using example values for [Na+K]IVF and [Na] comes from the hypothetical in the 

main text about infusing normal saline (NS) into a patient whose serum sodium is 111 mEq/L. 

No matter how much NS is given, the delta [Na] will max out at 43 mEq/L. 

 

Flip the equation: enter a desired delta [Na] and get the IV fluid volume to infuse 

Rearrange equation (5) to solve not for delta [Na] but for 𝑉: 

(5) 
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Substitute in [Na] + Δ[Na] = [Na]$, where [Na]$ is the target serum sodium: 

 

Equation (6) is more useful to the clinician who often has a desired delta [Na] in mind and wants 

to know how to achieve it in terms of an IV fluid volume to prescribe. 

 

Slope and 𝒚-intercept 

Edelman et al.’s scatter plot (their Figure 7) suggested that the relationship between [Na] and 

Nae!Ke
TBW

 was a diagonal line. However, that best-fit line did not have a slope of 1 (rather, 1.11) and 

did not have a 𝑦-intercept of 0 (rather, −25.6). This skewing and displacement of the line are 

believed to be caused by a Gibbs-Donnan equilibrium. Thus, the Edelman equation without 

simplification is: 

[Na] = 𝑚 ⋅
Nae + Ke

TBW
+ 𝑏 

where 𝑚 is the slope (that is close to but not exactly 1) and 𝑏 is the 𝑦-intercept (that is close to 

but not exactly 0). Using the full Edelman equation above to re-derive the delta [Na] equations 

may improve their accuracy. First, we re-derived the Nguyen-Kurtz equation because it is the 

most comprehensive and versatile; it includes a generic input, a generic output, and a therapeutic 

(6) 
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IV fluid. Then the simpler sodium equations, which are just special cases, flow directly from 

Nguyen-Kurtz in its slope/𝑦-intercept format. For example, A-M uses only the therapeutic IV 

fluid, so zeroing out the generic input and generic output in Nguyen-Kurtz will yield the A-M 

equation in its own slope/𝑦-intercept format. The same principle applies to Barsoum-Levine. 

 

By the full Edelman equation, the starting sodium is [Na]% = 𝑚 ⋅ Nae!Ke
TBW

+ 𝑏. As before, the 

therapeutic IV fluid’s relevant parameters can be denoted as [Na+K]IVF and 𝑉IVF. The generic 

input variables can be called [Na+K]In and 𝑉In, and the generic output variables can be called 

[Na+K]Out and 𝑉Out. When the effects of all these gains/losses are entered into the full Edelman 

equation, the ending sodium is: 

[Na]$ = 𝑚 ⋅
Nae + Ke + [Na+K]IVF ⋅ 𝑉IVF + [Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out

TBW + 𝑉IVF + 𝑉In − 𝑉Out
+ 𝑏 

Then the delta [Na] is calculated by: 

Δ[Na] = [Na]$ − [Na]% = 𝑚 ⋅
Nae +Ke + [Na+K]IVF ⋅ 𝑉IVF + [Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out

TBW +𝑉IVF +𝑉In − 𝑉Out
+ 𝑏 − =𝑚 ⋅

Nae +Ke

TBW
+ 𝑏> 

First, the 𝑏’s are subtracted out. Next, factor out the 𝑚’s: 

Δ[Na] = 𝑚 ⋅ ?
Nae + Ke + [Na+K]IVF ⋅ 𝑉IVF + [Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out

TBW+ 𝑉IVF + 𝑉In − 𝑉Out
−

Nae +Ke

TBW
@ 

Put what is inside the brackets over a common denominator: 

Δ[Na] = 𝑚 ⋅ ?
(Nae + Ke) ⋅ TBW+ [Na+K]IVF ⋅ 𝑉IVF ⋅ TBW+ [Na+K]In ⋅ 𝑉In ⋅ TBW− [Na+K]Out ⋅ 𝑉Out ⋅ TBW

(TBW+ 𝑉IVF +𝑉In − 𝑉Out) ⋅ TBW

−
(Nae +Ke) ⋅ (TBW+𝑉IVF +𝑉In −𝑉Out)
(TBW+ 𝑉IVF + 𝑉In − 𝑉Out) ⋅ TBW

@ 

The (Nae + Ke) ⋅ TBW terms are subtracted out, leaving: 
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Δ[Na] = 𝑚 ⋅ ?
[Na+K]IVF ⋅ 𝑉IVF ⋅ TBW+ [Na+K]In ⋅ 𝑉In ⋅ TBW− [Na+K]Out ⋅ 𝑉Out ⋅ TBW

(TBW+ 𝑉IVF + 𝑉In − 𝑉Out) ⋅ TBW

−
(Nae +Ke) ⋅ (𝑉IVF + 𝑉In − 𝑉Out)
(TBW+ 𝑉IVF + 𝑉In − 𝑉Out) ⋅ TBW

@ 

Above, in the first fraction, the TBW’s cancel out, leaving: 

Δ[Na] = 𝑚 ⋅ ?
[Na+K]IVF ⋅ 𝑉IVF + [Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out

TBW+ 𝑉IVF + 𝑉In − 𝑉Out
−

(Nae +Ke) ⋅ (𝑉IVF +𝑉In −𝑉Out)
(TBW+𝑉IVF +𝑉In − 𝑉Out) ⋅ TBW

@ 

Above, in the second fraction, isolate the Nae!Ke
TBW

 into a separate multiplier: 

Δ[Na] = 𝑚 ⋅ ?
[Na+K]IVF ⋅ 𝑉IVF + [Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out

TBW+𝑉IVF +𝑉In − 𝑉Out
−

𝑉IVF + 𝑉In −𝑉Out

TBW+𝑉IVF + 𝑉In −𝑉Out
⋅
Nae +Ke

TBW
@ 

The Nae!Ke
TBW

 is equal to [Na]ABC
D

, seen by rearranging [Na]% = 𝑚 ⋅ Nae!Ke
TBW

+ 𝑏. Substituting in: 

Δ[Na] = 𝑚 ⋅ ?
[Na+K]IVF ⋅ 𝑉IVF + [Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out

TBW+𝑉IVF +𝑉In −𝑉Out
−

𝑉IVF +𝑉In −𝑉Out

TBW+ 𝑉IVF +𝑉In − 𝑉Out
⋅
[Na]% − 𝑏

𝑚
@ 

Distribute the 𝑚 and combine the fractions over a common denominator: 

Δ[Na] =
𝑚 ⋅ [Na+K]IVF ⋅ 𝑉IVF +𝑚 ⋅ [Na+K]In ⋅ 𝑉In −𝑚 ⋅ [Na+K]Out ⋅ 𝑉Out − (𝑉IVF +𝑉In −𝑉Out) ⋅ ([Na]% − 𝑏)

TBW+𝑉IVF + 𝑉In −𝑉Out
 

Group the similar terms according to their volume multipliers: 

Δ[Na] =
𝑚 ⋅ [Na+K]IVF ⋅ 𝑉IVF + 𝑏 ⋅ 𝑉IVF − [Na]% ⋅ 𝑉IVF +𝑚 ⋅ [Na+K]In ⋅ 𝑉In + 𝑏 ⋅ 𝑉In − [Na]% ⋅ 𝑉In − 𝑚 ⋅ [Na+K]Out ⋅ 𝑉Out − 𝑏 ⋅ 𝑉Out + [Na]% ⋅ 𝑉Out

TBW + 𝑉IVF + 𝑉In − 𝑉Out
 

Factor out the volume multipliers: 

Δ[Na] =
(𝑚 ⋅ [Na+K]IVF + 𝑏 − [Na]%) ⋅ 𝑉IVF + (𝑚 ⋅ [Na+K]In + 𝑏 − [Na]%) ⋅ 𝑉In − (𝑚 ⋅ [Na+K]Out + 𝑏 − [Na]%) ⋅ 𝑉Out

TBW+𝑉IVF + 𝑉In −𝑉Out
 

Break up the one big fraction into three smaller fractions: 

Δ[Na] =
𝑚 ⋅ [Na+K]IVF + 𝑏 − [Na]%
TBW+ 𝑉IVF + 𝑉In −𝑉Out

⋅ 𝑉IVF./////////0/////////1
Module for therapeutic IV fluid

+
𝑚 ⋅ [Na+K]In + 𝑏 − [Na]%
TBW+ 𝑉IVF + 𝑉In −𝑉Out

⋅ 𝑉In.////////0////////1
Module for generic input

−
𝑚 ⋅ [Na+K]Out + 𝑏 − [Na]%
TBW+𝑉IVF +𝑉In − 𝑉Out

⋅ 𝑉Out./////////0/////////1
Module for generic output

 

Each of the smaller fractions is seen to function like a module for a particular input/output. The 

pattern is consistently repeated and can be generalized into a rubric for incorporating any number 

of gains and losses: 

(7) 
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1) Sign: Inputs (including the therapeutic IV fluid) are added, and outputs are subtracted. 

2) Each input or output fluid’s [Na+K] is modified by the slope and 𝑦-intercept, as in 𝑚 ⋅

[Na+K]IVF + 𝑏 for example, similar to the way that the Nae!Ke
TBW

 is modified by the slope and 𝑦-

intercept in the full Edelman equation. 

3) From part 2), subtract the patient’s starting sodium, [Na]%. This forms the numerator. 

4) Divide by a denominator that is basically the new body volume after all gains and losses: 

TBW+ 𝑉IVF + 𝑉In − 𝑉Out. 

5) Multiply the whole fraction by the volume of the input or output, 𝑉IVF for example. 

6) Sum up all of the modules to calculate the delta [Na]. 

Knowing the rubric, one can fathom the complexity of the equation and even reconstruct it. 

 

Equation (7) is the delta [Na] version of the Nguyen-Kurtz sodium formula with a slope and 𝑦-

intercept. From this all-inclusive version, modules can be omitted to quickly arrive at the other 

eponymous sodium equations in their slope and 𝑦-intercept forms. For example, the Adrogué-

Madias formula considers only the IV fluid, so removing the generic input and generic output 

reduces equation (7) to: 

Δ[Na] =
𝑚 ⋅ [Na+K]IVF + 𝑏 − [Na]%

TBW+ 𝑉IVF
⋅ 𝑉IVF 

This A-M formula with a slope and 𝑦-intercept is reminiscent of equation (5), reproduced here: 

Δ[Na] =
[Na+K]IVF − [Na]

TBW+ 𝑉 ⋅ 𝑉 

If 𝑚 = 1 and 𝑏 = 0, as A-M assumes, then equation (8) turns into equation (5) exactly, as it 

should. This internal consistency also serves as a check on all of the preceding algebra. 

 

(8) 
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Flip the equation again: slope and 𝒚-intercept edition 

As with flipping equation (5)—delta [Na]—into equation (6)—volume of IVF—, equation (7) 

can also be rearranged to solve for the volume of therapeutic IV fluid to infuse. Arguably, this is 

the more useful information to know when treating a dysnatremia. Without delving into the 

algebraic details, we present the formula for the IVF volume: 

𝑉IVF =
Δ[Na] ⋅ TBW− (𝑚 ⋅ [Na+K]In + 𝑏 − [Na]$) ⋅ 𝑉In

GHHHHHHHHHIHHHHHHHHHJ
Module for generic input

+ (𝑚 ⋅ [Na+K]Out + 𝑏 − [Na]$) ⋅ 𝑉Out
GHHHHHHHHHHIHHHHHHHHHHJ

Module for generic output

∓⋯
𝑚 ⋅ [Na+K]IVF + 𝑏 − [Na]$

 

Equation (9) is a little harder to remember, but a few rules will help in reconstructing it: 

1) Sign: Contrarily, inputs are subtracted, and outputs are added. The ∓ indicates the opposite of 

the expected sign, and the ellipsis indicates the modular, expandable nature of the equation. 

2) The numerator starts off with the Δ[Na] ⋅ TBW, like in equation (6). This gives a sense of how 

much cationic solute should be gained or lost to achieve a desired change in serum sodium. 

3) From there, the numerator accommodates as many modules as there are inputs and outputs. 

4) Each module is stereotypically an I/O fluid’s [Na+K], modified by the slope and 𝑦-intercept, 

minus the ending serum sodium, [Na]$. Multiply that difference by the volume of the I/O. 

5) Divide the entire numerator by a denominator consisting of the therapeutic IV fluid’s [Na+K], 

modified by the slope and 𝑦-intercept, minus the [Na]$. 

Check: If generic I’s/O’s are zeroed out, equation (9) turns into equation (6) for 𝑚 = 1, 𝑏 = 0: 

𝑉 =
Δ[Na] ⋅ TBW

[Na+K]IVF − [Na]$
 

Amazingly, our equation (9) is mathematically identical to the Nguyen-Kurtz equation (6) from 

their article (Clin Exp Nephrol 7: 125-137, 2003). Written in our nomenclature, their (6) was: 

𝑉IVF =
([Na]% − 𝑏) ⋅ TBW− ([Na]$ − 𝑏) ⋅ (TBW+𝑉In −𝑉Out) +𝑚 ⋅ ([Na+K]In ⋅ 𝑉In − [Na+K]Out ⋅ 𝑉Out)

[Na]$ − 𝑏 −𝑚 ⋅ [Na+K]IVF
 

That can be massaged into our equation (9), which has a more memorable pattern and grouping. 

(9) 


