How to Cite this article: John Danziger, Laura Dodge, Howard Hu, and Kenneth Mukamal, Susceptibility to environmental heavy metal toxicity among Americans with kidney disease, *Kidney360*, Publish Ahead of Print, 2022, 10.34067/KID.0006782021

Article Type: Original Investigation

Susceptibility to environmental heavy metal toxicity among Americans with kidney disease

DOI: 10.34067/KID.0006782021

John Danziger, Laura Dodge, Howard Hu, and Kenneth Mukamal

Key Points:
* Impaired kidney function is associated with higher lead blood levels, yet simultaneously, lower amounts of urinary lead excretion.
* These findings suggest an increased susceptibility to progressive lead accumulation from even low levels of environmental exposure.
* Further research into the public health consequences of heavy metal exposure is needed, particularly among vulnerable populations.

Abstract:

Background: The consequences of low levels of environmental heavy metal exposure, as found widely in the United States, in those with impaired renal function remains under-explored. Methods: We examined the cross-sectional association of indices of renal function with lead and cadmium levels in blood and urine among National Health and Nutrition Examination Survey (NHANES) participants. We used the 1999-2002 cycle, which included measures of cystatin C, in order to most precisely quantify renal function, and defined chronic kidney disease (CKD) as an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73m². Results: In weighted and adjusted analyses of 5,638 participants, lead levels were 0.23 (95%CI 0.03,0.42) ug/dL higher among participants with CKD, and 0.05(95%CI 0.01,0.09) ug/dL higher per 10 ml/min/1.73m² lower eGFR. Cadmium levels were 0.02(95%CI 0.01,0.03) ug/L higher per 10 ml/min/1.73m² lower eGFR. Black race significantly modified the association of lower eGFR with higher circulating lead levels (p interaction <0.001). A 10 ml/min/1.73 m² lower eGFR was associated with a 0.13(95%CI 0.06,0.21) ug/dL higher lead level among Black participants compared to 0.03(95%CI 0.04,0.11) ug/dL higher level among white participants. Among the 1,852 participants with urinary metal measurements, despite higher circulating levels, those with CKD had significantly lower urinary lead levels (-0.16(95%CI -0.30,-0.01) ng/ml) and urinary lead/creatinine ratios (-0.003(95%CI -0.004,-0.001). Conclusion: CKD is associated with higher blood lead levels, particularly among Blacks, and simultaneously, lower urinary lead levels, consistent with the hypothesis that CKD confers a state of heightened susceptibility to heavy metal environmental exposure by reducing its elimination. Given that low levels of exposure remain highly prevalent in the United States, further efforts to protect patients with CKD from heavy metal toxicity may be warranted.

Disclosures: J. Danziger reports the following: Consultancy: Healthmap Solutions; Ownership Interest: Healthmap Solutions; and Other Interests or Relationships: Regional medical director, Healthmap Solutions. H. Hu reports the following: Ownership Interest: Apple, Advanced Micro Devices, Amazon, Appian Corp, Costco, Disney, Enerphase Energy, Alphabet, Innovative INDL, Kinsale CAP Group, Micron Technology, Netflix, NVIDIA, NOVONIX, Pershing Square, Qualcomm, Taiwan Semiconductor, Wells Fargo, Zoom; and Advisory or Leadership Role: Chair, Scientific Advisory Board, the Marilyn Brachman Hoffman Foundation. K. Mukamal reports the following: Other Interests or Relationships: U.S. Highbush Blueberry Council, Wolters Kluwer. The remaining author has nothing to disclose.

Funding:

Author Contributions: John Danziger: Conceptualization; Data curation; Investigation; Methodology; Writing - original draft Laura Dodge: Formal analysis Howard Hu: Writing - review and editing Kenneth Mukamal: Writing - review and editing

Data Sharing Statement:

Clinical Trials Registration:

Registration Number:

Copyright 2022 by American Society of Nephrology.
The information on this cover page is based on the most recent submission data from the authors. It may vary from the final published article. Any fields remaining blank are not applicable for this manuscript.
Susceptibility to environmental heavy metal toxicity among Americans with kidney disease

John Danziger,¹ Laura E. Dodge,²,³ Howard Hu, Kenneth J. Mukamal¹

1. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
2. Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
3. Harvard T.H. Chan School of Public Health, Boston, MA
4. Department of Preventative Medicine, Keck School of Medicine, University of Southern California

Correspondence:
John Danziger, MD
Beth Israel Deaconess Medical Center, Harvard Medical School
Nephrology
330 Brookline Ave E/DA 517
Boston, Massachusetts 02115
United States
617 667 2147
jdanzige@bidmc.harvard.edu
Key Points

- Impaired kidney function is associated with higher lead blood levels, yet simultaneously, lower amounts of urinary lead excretion.
- These findings suggest an increased susceptibility to progressive lead accumulation from even low levels of environmental exposure.
- Further research into the public health consequences of heavy metal exposure is needed, particularly among vulnerable populations.

Abstract

Background: The consequences of low levels of environmental heavy metal exposure, as found widely in the United States, in those with impaired renal function remains under-explored.

Methods: We examined the cross-sectional association of indices of renal function with lead and cadmium levels in blood and urine among National Health and Nutrition Examination Survey (NHANES) participants. We used the 1999-2002 cycle, which included measures of cystatin C, in order to most precisely quantify renal function, and defined chronic kidney disease (CKD) as an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73m².

Results: In weighted and adjusted analyses of 5,638 participants, lead levels were 0.23(95%CI 0.03,0.42) ug/dL higher among participants with CKD, and 0.05(95%CI 0.01,0.09) ug/dL higher per 10 ml/min/1.73m² lower eGFR. Cadmium levels were 0.02(95%CI 0.01,0.03) ug/L higher per 10 ml/min/1.73m² lower eGFR. Black race significantly modified the association of lower eGFR with higher circulating lead levels (p interaction <0.001). A 10 ml/min/1.73 m³ lower eGFR was associated with a 0.13(95%CI 0.06,0.21) ug/dL higher lead level among Black participants compared to 0.03(95%CI -0.04,0.11) ug/dL higher level among white participants. Among the 1,852 participants with urinary metal measurements, despite higher circulating levels, those with CKD had significantly lower urinary lead levels (-0.16(95%CI -0.30,-0.01) ng/ml) and urinary lead/creatinine ratios (-0.003(95%CI-0.004,-0.001).

Conclusion: CKD is associated with higher blood lead levels, particularly among Blacks, and simultaneously, lower urinary lead levels, consistent with the hypothesis that CKD confers a state of heightened susceptibility to heavy metal environmental exposure by reducing its elimination. Given that low levels of exposure remain highly prevalent in the United States, further efforts to protect patients with CKD from heavy metal toxicity may be warranted.

Introduction

While environmental and consumer regulations have reduced the overall levels of heavy metal
contamination over the last several decades, low levels of exposure remain widespread. In addition to lead paint that remains common in older homes, the aging infrastructure of water systems throughout the United States confers daily exposure to lead for many individuals (1). Similarly, cadmium is in many products, including batteries, pigments, metal coatings, plastics, and cigarette smoke, and exposure occurs through ingestion of contaminated foodstuffs or inhalation (2).

While low levels of exposure may be of less clinical significance for healthy adults, children are particularly susceptible, in part due to higher proportions absorbed across the gastrointestinal tract, and rapid cell metabolism. Whether chronic kidney disease (CKD) may confer a similar heightened susceptibility is largely unknown. Studies demonstrating an association between lead (3–7) and cadmium (8,9) and kidney disease have primarily been interpreted as causative due to the toxic effect on proximal tubular function. However, the possibility of reverse causality, whereby impaired renal function results in higher circulating blood levels and thus greater long-term toxicity to other organs, has not been fully clarified. Furthermore, since heavy metal toxicity disproportionately affects minoritized racial and ethnic populations, who simultaneously have higher rates of CKD, understanding the hazard from environmental toxins is of public health urgency.

Accordingly, in a representative sampling of United States individuals, we describe the associations of renal function with circulating and urinary lead and cadmium levels and whether these associations are consistent across racial and ethnic strata. We hypothesized that renal function would be associated with higher circulating but reduced urinary levels, suggesting reduced excretion, that might be expected to increase long-term toxicity.

Methods
The National Health and Nutrition Examination Survey (NHANES) is a complex, multi-stage probability sample of the United States civilian, noninstitutionalized population designed to assess the health and nutritional status of adults and children. It combines granular historical, physical, and laboratory examinations to provide nationally representative data at two-year cycles, with no repeat individual measurements. For our primary analyses, we used cycles 1999-2000 and 2001-2002, as they included measures of cystatin C in all participants aged 60 years and older, and a 25% random sample of participants aged 12-59 years. Of those with measures of Cystatin C, 5,638 participants also had measures of lead and cadmium concentrations in blood, and these individuals comprised the primary
dataset. All participants provided informed consent, and the NHANES study protocol was approved by the National Center for Health Statistics Research Ethics Review Board.

The 2012 CKD-EPI Cystatin C equation was used to calculate participants’ estimated glomerular filtration rate (eGFR), which was examined continuously and according to standard definitions of CKD (<60 ml/min/1.73m²). Whole blood lead and cadmium concentrations were determined using inductively coupled plasma mass spectrometry. Extreme outliers of lead and cadmium were replaced at the 99.5th percentile (13.5 ug/dL and 2.8 ug/L for lead and cadmium, respectively). Levels of lead and cadmium were below the limit of detection among 122(2%) and 1339(24%) individuals, respectively, for whom the value was the detection limit (0.2 ug/dL for lead and 0.2 ug/L for cadmium) divided by the square root of two. Additional variables included age, gender, race/ethnicity, family income, number of individuals per household, and citizenship status. For the purpose of this study, self-reported race/ethnicity was categorized into white, Black, Hispanic, and other/unknown. Median household income was categorized at <=$19,999, $19,999 to $34,999, $35,000 to $64,999, and ≥$65,000.

Unweighted participant characteristics and estimates of heavy metal concentration are provided according to renal function. We used multivariate linear regression adjusted for all variables above and accounting for the survey sampling scheme to examine the association between eGFR and lead and cadmium levels. Multi-year sample weights were used to obtain unbiased estimates comparable to the United States population estimates for all analyses. We used multiplicative interaction terms between Black race and Hispanic ethnicity and eGFR to examine for effect modification, and we provide the stratified results when significant (p value <0.05).

To estimate heavy metal excretion, we examined spot urinary heavy metal concentrations and metal to creatinine concentrations to account for urinary concentration among 1,852 participants with available measures. Secondarily, to explore the impact of newly recommended race free estimates of renal function, we used the 2021 CKD-EPI cystatin and creatinine and the 2021 CKD-EPI creatinine equations in our primary analyses. In addition, to provide more contemporaneous estimates, we examined the NHANES 2017-20 cycle, using the 2021 CKD-EPI creatinine equation.

Analyses were performed using JMP Pro 15 and SAS 9.4 (SAS Institute, Cary, NC).

Results

Of the 5,638 NHANES participants in the 1999-02 cycles with measured cystatin levels, 17% (n=989) had CKD (table 1). The unweighted mean(SD) estimates of lead and cadmium in blood were 2.3(1.9) ug/dL.
and 0.54(0.41) ug/L, respectively, and these correlated indirectly with renal function (figure 1).

Compared to those with eGFR >60 ml/min/1.73m², participants with CKD had significantly higher mean levels of lead and cadmium (3.0(2.1) versus 2.1(1.8) ug/dL and (0.65(0.40) versus 0.51(0.41) ug/L), respectively).

In weighted and adjusted analyses, a 10-ml/min/1.73m² lower eGFR was associated with a 0.05(95%CI 0.01,0.09) ug/dL higher lead concentration and 0.02(95%CI 0.01,0.03) ug/L higher cadmium concentration (table 2). Blood levels of lead, but not cadmium, were significantly higher among Black participants than among participants from other racial/ethnic groups (table 2). Furthermore, the magnitude of the association of decreasing eGFR with lead levels was significantly higher among Black participants (multiplicative interaction between Black race and eGFR p value <0.001). Decrementsof 10 ml/min/1.73 m² lower eGFR were associated with a 0.13(95%CI 0.06,0.21) ug/dL higher lead level among Black participants compared to 0.03(95%CI -0.04,0.11) ug/dL higher level among white participants (figure 2). Cadmium levels were, on average, lower among Hispanic participants, and its association with renal function was not modified by race.

CKD was associated with a 0.23(95%CI 0.03, 0.42) ug/dL higher adjusted lead level (table 3). CKD was not associated with differences in cadmium concentrations. Among the 1,852 participants with measures of urinary metal concentrations, baseline characteristics of those with CKD with and without urinary lead measurements were similar. Compared to those with an eGFR >60 min/ml/1.73 m², those with CKD (n=302) had higher adjusted levels of lead in the blood (0.21(95%CI -0.04,0.47) ug/dL), but lower levels of urinary lead excretion (0.16(95%CI -0.30,-0.01) ng/ml lower urine lead concentration and 0.003(95%CI -0.004,-0.001) lower urine lead/creatinine ratio) (table 3). The lower urinary lead excretion observed with CKD was consistent across racial strata (multiplicative interaction p value >0.05).

Utilizing race free creatinine based estimates of eGFR resulted in re-classification of CKD (n=987 and n=561 for CKD EPI cystatin-creatinine and creatinine only, respectively), but similarly higher blood and lower urinary lead levels in those with CKD compared to normal renal function (table 3). Mean blood and urine lead levels were significantly lower in more contemporaneous NHANES data (1.04(0.9) ug/dl and 0.45(0.6) ng/ml), respectively in 2017-2020 participants), and while CKD was similarly associated with higher blood lead levels, was not associated with urinary lead levels.

Discussion
Individuals with CKD have higher levels of lead in blood, and simultaneously, lower levels of urinary excretion, than those with normal renal function. While lead toxicity has historically been interpreted as a potential cause of CKD, our analysis suggests that at least in part, lead toxicity may be a consequence of CKD. Accordingly, that individuals with CKD may have heightened susceptibility to even low levels of environmental exposures that are found widely across the United States warrants further research.

Elevations in blood levels within the range considered normal, and similar to those observed in our analyses, have previously been shown to be associated with negative impacts(10). Furthermore, given that lead deposits widely in soft tissue and skeleton(11), such modest elevations may underestimate the biologic consequences of repeated exposures over time. Total body lead accumulation, as can be measured with lead x-ray fluorescence(12–14), has been more closely associated with adverse health outcomes, some of which may develop many years after exposure(15–20).

Given continued environmental exposure to heavy metals in the United States, the hazard for those with CKD is of public health concern(21,22). Recently, we have demonstrated that levels of lead found widely in community water systems across the United States, and well below the U.S. Environmental Protection Agency’s surveillance threshold that mandates regulatory action, are associated with lower hemoglobin concentrations and more erythropoietin stimulating agent (ESA) use among those with advanced kidney disease(23). Given the protean toxic effects of lead, whether low levels of environmental exposure will similarly associate with other diseases in CKD is unknown. Importantly, since studies have demonstrated adverse neurocognitive effects of even low levels of lead exposure, including Parkinson’s, dementia, and depression(24,25), diseases which are highly prevalent in CKD, further studies are needed.

In addition, Black individuals, who tend to have higher rates of lead exposure(26), disproportionately greater rates of CKD(27), and inequitable health care(28), are particularly vulnerable to heavy metal contamination. The significantly stronger effect of decreasing GFR on lead levels observed among Black participants compared to those from other ethnic groups suggests even greater susceptibility. Explanations for such effect modification are not clear. Black individuals tend to have higher rates of iron deficiency and vitamin D deficiency, which increase proportions of lead absorbed across the gastrointestinal tract(29–31). Differences in proximal tubular handling of lead, separate from change in GFR, might similarly contribute to these differences, as well as a range of polymorphisms in the
molecular handling of lead. Ultimately, further studies to identify the mechanisms of heightened lead susceptibility among Black individuals with CKD are warranted.

Our study has important limitations. Most notably, the confounding effect of reverse causality cannot be addressed in this cross-sectional analysis, and the directionality of the CKD-lead association requires further study. Other limitations include the absence of measures of environmental heavy metal exposure. Despite these limitations, given continued low levels of exposure in the United States, the biologic principles herein are of important public health value.

Conclusion
CKD may confer a heightened susceptibility to low levels of heavy metal exposure found commonly in the United States, particularly among Black individuals. The long-term health effects of environmental heavy metal exposure for those with CKD, and the need for further mitigation strategies, require further study.
Disclosures

J. Danziger reports the following: Consultancy: Healthmap Solutions; Ownership Interest: Healthmap Solutions; and Other Interests or Relationships: Regional medical director, Healthmap Solutions. H. Hu reports the following: Ownership Interest: Apple, Advanced Micro Devices, Amazon, Appian Corp, Costco, Disney, Enphase Energy, Alphabet, Innovative INDL, Kinsale CAP Group, Micron Technology, Netflix, NVIDIA, NOVONIX, Pershing Square, Qualcomm, Taiwan Semiconductor, Wells Fargo, Zoom; and Advisory or Leadership Role: Chair, Scientific Advisory Board, the Marilyn Brachman Hoffman Foundation. K. Mukamal reports the following: Other Interests or Relationships: U.S. Highbush Blueberry Council, Wolters Kluwer. The remaining author has nothing to disclose.

Funding

None

Author Contributions

John Danziger: Conceptualization; Data curation; Investigation; Methodology; Writing - original draft. Laura Dodge: Formal analysis. Howard Hu: Writing - review and editing. Kenneth Mukamal: Writing - review and editing.

References

1. Lead Fact Sheet: Centers for Disease Control and Prevention [Internet]. [cited 2021 Mar 3]. Available from: https://www.cdc.gov/biomonitoring/Lead_FactSheet.html

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Normal kidney function (n=4,649)</th>
<th>CKD (n=989)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>46.3(23.1)</td>
<td>74.6(10.7)</td>
</tr>
<tr>
<td>Gender (f)</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>43</td>
<td>66</td>
</tr>
<tr>
<td>Black</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Hispanic</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Household income ($1,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><19,999</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>20,000-34,999</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>35,000-64,999</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>65,000 or higher</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>Diabetes (y)</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Household members (n)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Citizenship (%)</td>
<td>88</td>
<td>96</td>
</tr>
<tr>
<td>Whole blood lead (ug/dl)</td>
<td>2.1(1.8)</td>
<td>3.0(2.1)</td>
</tr>
<tr>
<td>Urine lead (ng/ml)</td>
<td>1.24(1.43)</td>
<td>1.20(1.66)</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of 1999-2002 participants. Mean (SD) and column percentages provided for continuous and categorical variables, respectively. CKD defined by cystatin C estimated glomerular filtration rate <60/min/1.73 m².
Table 2

<table>
<thead>
<tr>
<th></th>
<th>Adjusted change of lead level, ug/dL, (95%CI)</th>
<th>P value</th>
<th>Adjusted change of cadmium level, ug/L, (95%CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per year)</td>
<td>0.02(0.02, 0.03)</td>
<td><0.001</td>
<td>0.001(-0.001, 0.002)</td>
<td>0.29</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>0.87(0.73, 1.01)</td>
<td><0.001</td>
<td>-0.003(-0.05,0.04)</td>
<td>0.91</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Ref</td>
<td>-</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.28(0.10, 0.46)</td>
<td>0.004</td>
<td>-0.02(-0.08, 0.05)</td>
<td>0.65</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.02(-0.20, 0.24)</td>
<td>0.83</td>
<td>-0.06(-0.15,0.03)</td>
<td>0.18</td>
</tr>
<tr>
<td>Other</td>
<td>0.05(-0.14,0.23)</td>
<td>0.60</td>
<td>0.16(0.08,0.25)</td>
<td><0.001</td>
</tr>
<tr>
<td>Number of household</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>occupants (per one)</td>
<td>0.03(-0.05,0.10)</td>
<td>0.46</td>
<td>-0.01(-0.02,0.01)</td>
<td>0.43</td>
</tr>
<tr>
<td>Household monthly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>income($1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><19,999</td>
<td>Ref</td>
<td><0.001</td>
<td>Ref</td>
<td><0.001</td>
</tr>
<tr>
<td>20,000-34,999</td>
<td>-0.01(-0.24, 0.23)</td>
<td></td>
<td>-0.05(-0.11,0.02)</td>
<td></td>
</tr>
<tr>
<td>35,000-64,999</td>
<td>-0.09(-0.27, 0.09)</td>
<td></td>
<td>-0.11(-0.19,-0.03)</td>
<td></td>
</tr>
<tr>
<td>65,000 or higher</td>
<td>-0.43(-0.63,-0.23)</td>
<td></td>
<td>-0.20(-0.26,-0.14)</td>
<td></td>
</tr>
<tr>
<td>U.S citizenship (y)</td>
<td>-0.52(-0.81,-0.23)</td>
<td><0.001</td>
<td>-0.01(-0.12,0.10)</td>
<td>0.87</td>
</tr>
<tr>
<td>eGFR (per 10 ml/min)</td>
<td>-0.05(-0.09, -0.01)</td>
<td>0.02</td>
<td>-0.02(-0.03,-0.01)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 2. Adjusted change of baseline characteristics on lead and cadmium levels, weighted to represent the United States population. Adjusted for age, gender, race/ethnicity, number of household occupants, monthly income, citizenship, and renal function, as estimated from Cystatin C calculated glomerular filtration rate.
Table 3

<table>
<thead>
<tr>
<th></th>
<th>Adjusted difference in blood and urinary lead levels in those with CKD compared to normal renal function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NHANES 1999-2002¹</td>
</tr>
<tr>
<td></td>
<td>Cystatin 2012</td>
</tr>
<tr>
<td>Whole blood lead level (ug/dl)</td>
<td>0.23 (0.03, 0.42)</td>
</tr>
<tr>
<td>Whole blood level in those with urinary lead levels (ug/dl)</td>
<td>0.21 (-0.04, 0.47)</td>
</tr>
<tr>
<td>Urinary lead (ng/ml)</td>
<td>-0.16 (-0.30, -0.01)</td>
</tr>
<tr>
<td>Urinary lead/creat ratio</td>
<td>-0.003 (-0.004, -0.001)</td>
</tr>
</tbody>
</table>

Table 3. Association of chronic kidney disease (eGFR <60 ml/min/1.73m²) with levels of lead in blood and urine. ¹Adjusted for age, gender, race/ethnicity, number of household occupants, monthly income, citizenship. ²Adjusted for age, gender, race/ethnicity. All models are use strata (sdmvstra) and cluster (sdmvpsu) variables. Urinary measures use 4 year heavy metal weights (wtshm4yr). 2017-2020 cohort use MEX exam weights (wtmecprp) for all outcomes.
Figure 1. Crude blood lead and cadmium concentrations according to Cystatin C estimated glomerular filtration rate. A 10 ml/min/1.73 m² lower eGFR was associated with a 0.15 (0.13,0.17)ug/dL and 0.03(0.02,0.03) ug/L higher lead and cadmium level, respectively, in univariate analyses weighted for NHANES participation. Contour map reflects density of participants.
Figure 2. Effect of race/ethnicity on the association of decreasing renal function and blood lead concentrations. Lower estimated glomerular filtration was associated with significantly higher levels of lead among Blacks than other race/ethnic groupings (multiplicative interaction p value <0.001). Adjusted for age, gender, race/ethnicity, number of household occupants, monthly income, citizenship, and renal function, and weighted for survey participation.