How to Cite this article: Aniqa Azim, Jennifer Murray, Srinivasan Beddhu, and Kalani Raphael, Urinary sulfate, kidney failure, and death in CKD: the African American Study of Kidney Disease and Hypertension, *Kidney360*, Publish Ahead of Print, 2022, 10.34067/KID.0000322022

Article Type: Original Investigation

Urinary sulfate, kidney failure, and death in CKD: the African American Study of Kidney Disease and Hypertension

DOI: 10.34067/KID.0000322022

Aniqa Azim, Jennifer Murray, Srinivasan Beddhu, and Kalani Raphael

Key Points:
Higher urine sulfate levels were associated with more favorable outcomes in African Americans with kidney disease attributed to hypertension

These findings are independent of dietary protein intake, suggesting that sulfate has an effect on health above and beyond protein intake

Abstract:
Background: Sulfur is an important mineral element whose principal source is animal protein. Animal protein contributes to the daily acid load, which is associated with poor outcomes in individuals with chronic kidney disease (CKD). We hypothesized that higher urinary sulfate, as a reflection of the daily acid load, is associated with a greater risk of death and CKD progression. Methods: Urinary sulfate was measured in 1057 African American Study of Kidney Disease and Hypertension (AASK) participants at baseline. Participants were categorized by tertiles of daily sulfate excretion. The longitudinal outcome of interest was the composite of death, dialysis, or 50% reduction in measured glomerular filtration rate (GFR). Multivariable adjusted Cox regression models were fit to relate the composite outcome to daily sulfate excretion using the lowest tertile as the reference. Results: Participants in the highest urinary sulfate tertile were more likely to be male and have higher body mass index, protein intake, measured GFR, and urinary ammonium and phosphate excretion, and lower urinary protein/creatinine. Compared to those in the lowest tertile of sulfate, those in the highest tertile had 44% lower hazard (95% CI, 0.37-0.84) and those in the middle tertile had 27% lower hazard (95% CI, 0.55-0.96) of death, dialysis or 50% reduction in measured GFR during follow-up after adjusting for demographics, GFR, protein intake and other potential confounders. Protein intake was not associated with risk of these events. Conclusions: Higher urinary sulfate excretion is associated with more favorable outcomes in African Americans who have CKD attributed to hypertension.

Disclosures: K. Raphael reports the following: Consultancy: AstraZeneca; and Research Funding: Department of Veterans Affairs (I01 CX001695). S. Beddhu reports the following: Consultancy: Bayer, Reata; Research Funding: Bayer, Boehringer Ingelheim, Novartis; and Advisory or Leadership Role: CJASN, Kidney Reports. The remaining authors have nothing to disclose.

Funding: Program of the Robert Wood Johnson Foundation: Kalani L. Raphael

Author Contributions: Aniqa Azim: Writing - original draft; Writing - review and editing Jennifer Murray: Investigation; Methodology; Writing - review and editing Srinivasan Beddhu: Conceptualization; Data curation; Investigation; Project administration; Writing - review and editing Kalani Raphael: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Writing - review and editing

Data Sharing Statement:

Clinical Trials Registration:

Registration Number:
The information on this cover page is based on the most recent submission data from the authors. It may vary from the final published article. Any fields remaining blank are not applicable for this manuscript.
Title: Urinary sulfate, kidney failure, and death in CKD: the African American Study of Kidney Disease and Hypertension

Authors: Aniqā Azim,1 Jennifer Murray,2 Srinivasan Beddhu,3 Kalani L. Raphael1,4

Affiliations:
1Department of Medicine, Oregon Health & Science University, Portland, OR
2The Dartmouth Institute for Health Policy & Clinical Practice, Lebanon, NH
3Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
4Division of Hospital & Specialty Medicine, VA Portland Health Care System, Portland, OR

Word count, abstract: 254

Word count, manuscript: 2489

Keywords: Sulfate, metabolic acidosis, protein intake, acid load, chronic kidney disease, African American Study of Kidney Disease and Hypertension, end-stage kidney disease, mortality, bicarbonate, diet, alkali load.

Running title: Urinary sulfate in CKD

Corresponding author’s name:
Kalani L. Raphael, MD
3181 SW Sam Jackson Park Rd
Portland, OR 97223

Email: raphaelk@ohsu.edu
Abstract

Background and objectives: Sulfur is an important mineral element whose principal source is animal protein. Animal protein contributes to the daily acid load, which is associated with poor outcomes in individuals with chronic kidney disease (CKD). We hypothesized that higher urinary sulfate, as a reflection of the daily acid load, is associated with a greater risk of death and CKD progression.

Design, setting, participants: Urinary sulfate was measured in 1057 African American Study of Kidney Disease and Hypertension (AASK) participants at baseline. Participants were categorized by tertiles of daily sulfate excretion. The longitudinal outcome of interest was the composite of death, dialysis, or 50% reduction in measured glomerular filtration rate (GFR). Multivariable adjusted Cox regression models were fit to relate the composite outcome to daily sulfate excretion using the lowest tertile as the reference.

Results: Participants in the highest urinary sulfate tertile were more likely to be male and have higher body mass index, protein intake, measured GFR, and urinary ammonium and phosphate excretion, and lower urinary protein/creatinine. Compared to those in the lowest tertile of sulfate, those in the highest tertile had 44% lower hazard (95% CI, 0.37-0.84) and those in the middle tertile had 27% lower hazard (95% CI, 0.55-0.96) of death, dialysis or 50% reduction in measured GFR during follow-up after adjusting for demographics, GFR, protein intake and other potential confounders. Protein intake was not associated with risk of these events.

Conclusions: Higher urinary sulfate excretion is associated with more favorable outcomes in African Americans who have CKD attributed to hypertension.
Introduction:

Sulfur is the third most abundant mineral element in the human body after calcium and phosphorus. Many important molecules contain sulfur, including the amino acids methionine and cysteine, hydrogen sulfide, and glutathione.1,2 Sulfur is also required for sulfation of drugs and toxins, including uremic toxins like p-cresol. Dietary protein is the principal source of sulfur; inorganic sulfate (SO\textsubscript{4}) from water, food preservatives, and other sources contributes to a lesser extent. Animal protein has a higher proportion of the sulfur-containing amino acids cysteine and methionine than plant protein and is the main source of sulfur in Western society. Although sulfur is an important mineral element, animal protein contributes to the daily dietary acid load,3-5 which is associated with poor outcomes in individuals with chronic kidney disease (CKD), including bone demineralization, muscle wasting, insulin resistance, and more rapid loss of kidney function.6-10

The potential benefits of restricting animal protein are many and include reducing the daily acid load, improving bicarbonate and phosphorus levels, and attenuating glomerular hyperfiltration and albuminuria.11-21 In most cases, dietary protein restriction involves reducing animal protein intake and, by default, sulfur intake. Hence, protein restriction may have adverse effects on sulfur metabolism and patient outcomes. We therefore evaluated the association between urinary SO\textsubscript{4} levels, the end-product of sulfur metabolism, and kidney and patient survival among participants in the African American Study of Kidney Disease and Hypertension (AASK). We hypothesized that higher urinary SO\textsubscript{4}, as a reflection of high protein intake and consequently daily acid load, is associated with higher risk of death and loss of kidney function.
Methods:

Study participants

The details of AASK have been published.²²⁻²⁴ Briefly, African Americans aged 18 to 70 years with CKD attributed to hypertension were eligible for the study. Key exclusion criteria included elevated fasting or random blood glucose, treatment for diabetes, or urinary protein to creatinine ratio > 2.5. Participants (n=1094) were randomized to ramipril, metoprolol, or amlodipine, and to one of two blood pressure goals (usual mean arterial pressure goal of 102–107 mm Hg or a low mean arterial pressure goal of ≤ 92 mm Hg). Baseline (pre-randomization) urine samples were available for 1057 participants, and these individuals were included in this analysis. AASK was overseen by institutional review boards of the participating sites and was performed under the principles embodied in the Declaration of Helsinki.

Measurements

Trained personnel obtained data on baseline demographic, clinical, and laboratory data using standardized forms. The 24-hour urine samples were confirmed to have been collected according to the AASK protocol and were necessary prior to randomization. Urine SO₄ was measured by barium precipitation on a Beckman AU 680 analyzer. The analytical measurement range is 2.5 – 80 mEq/L. Daily urinary SO₄ excretion was determined from 24-hour urine volumes. Serum total CO₂ was measured using either the kinetic ultraviolet method (Roche Hitachi 747 autoanalyzer, Roche, Indianapolis, IN) or a CO₂ electrode (Beckman CX3 Delta autoanalyzer, Beckman, Brea, CA). Urinary protein excretion was expressed as protein/creatinine (PCR) obtained from the 24-hour urine collection. Daily dietary protein intake (grams/d) was calculated from 24-hour urine urea nitrogen (UUN) excretion using the formula 6.25 x [UUN + (weight x 0.031)].²⁵ NEAP was calculated using the formula -10.2 + (54.5 x protein intake in grams/d)/urine potassium in mEq/d.²⁶

Statistical analysis
Participants were categorized by tertiles of daily SO$_4$ excretion. Continuous variables are presented as means with standard deviations (SD), unless otherwise specified. Categorical variables are presented as percentages. Significance tests were performed using analysis of variance for continuous variables and chi-squared tests for dichotomous variables.

The longitudinal outcome of interest was a composite of death, dialysis, or 50% reduction in measured GFR. These events were adjudicated by the AASK outcomes committee. Kaplan Meier curves were constructed to display event free survival by tertiles of urinary SO$_4$. A series of Cox regression models were fit to relate the composite outcome to daily urinary SO$_4$ excretion using the lowest tertile as the reference. Follow-up time was censored at the end of the Trial phase of AASK or permanent loss-to-follow-up. The initial model (Model 1) was unadjusted, followed by adjustment for age, sex, randomized group, iothalamate measured glomerular filtration rate (GFR), urinary PCR, body mass index (BMI), and serum total CO$_2$ (Model 2). A subsequent model also adjusted for protein intake, urinary potassium as a reflection of alkali intake, urinary phosphate, and serum phosphate (Model 3). Model 4 also adjusted for systolic blood pressure, history of heart disease, and smoking history and was considered our main model of interest. Similar Cox models were constructed for the outcomes of death alone or a kidney-specific outcome of 50% reduction in measured GFR or ESKD. A cubic spline regression analysis adjusted for variables in model 4 was performed using daily urinary SO$_4$ excretion as the predictor variable. Knots were placed at quartiles of daily urinary SO$_4$ and the median value (26.3 mEq/d) was the reference point. The variance inflation factor (VIF) of variables potentially correlated with urine sulfate (protein intake, serum and urine phosphate, serum and urine potassium, GFR, BMI, serum total CO$_2$) was determined, and there was no evidence of multicollinearity (VIF ≤3.40 for each variable).
Results:

Table 1 presents baseline characteristics of the 1057 participants for whom urinary SO₄ measurements were obtained. Participants in the highest urinary SO₄ tertile were more likely to be male and have higher BMI, protein intake, measured GFR, and urinary ammonium and phosphate excretion, and lower urinary PCR. Although protein intake was highest among those in the highest urine SO₄ tertile group, mean daily protein intake was not excessive.

Figure 1 shows baseline values of urinary SO₄, protein intake, urine potassium, and NEAP by categories of measured GFR. Urinary SO₄, protein intake, and urinary potassium levels were lower among those with lower measured GFR. There was no significant difference in NEAP across the measured GFR categories.

Figure 2 shows correlations between urinary SO₄ and protein intake, urinary potassium, NEAP, and serum total CO₂ at baseline. Urinary SO₄ was strongly correlated with protein intake (r=0.84) and urinary potassium, but to a lesser extent (r=0.53). There was no meaningful correlation between urinary SO₄ and NEAP or total CO₂.

Table 2 shows the number of composite events (death, dialysis, or 50% reduction in measured GFR) experienced among AASK participants according to baseline urinary SO₄ excretion. The number of events was lowest among those in the highest urinary SO₄ tertile. Figure 3 shows that event (death, dialysis, or 50% reduction in measured GFR) free survival in the lowest urinary SO₄ tertile started to decline at a greater rate than other groups after about one year of follow-up.

Table 3 shows unadjusted and adjusted hazard ratios (HR) for the composite outcome of death, dialysis, or 50% reduction in measured GFR by tertile of urinary SO₄. In the unadjusted model the hazard of the composite outcome was 37% lower for those in the highest tertile and 28% lower for those in the middle tertile compared to the lowest tertile. Additional adjustment did not substantially change the HR for either group. In our main model (model 4), those in the middle tertile had 27% lower hazard and those in the highest tertile had a 44% lower hazard of
death, dialysis, or 50% reduction in measured GFR. Table 3 also shows HR and 95% confidence intervals (CI) for the outcomes of (i) death alone and (ii) a kidney-specific outcome of ESKD or 50% reduction in measured GFR after adjusting for variables in model 4. For death alone, there was a 25% lower hazard in the middle tertile and a 53% lower hazard in the highest tertile, though neither was statistically significant owing to a low number of deaths during follow-up (n=83). For the kidney specific outcome (ESKD or 50% reduction in measured GFR), the hazard of experiencing these events was 27% lower in the middle tertile and 41% lower in the highest tertile compared to the lowest tertile.

Figure 4 shows the cubic spline regression plot between urinary SO₄ and the composite outcome using median daily urinary SO₄ excretion (26.3 mEq/d) as the reference point. The lowest risk of the composite outcome was with urinary SO₄ value of around 35-45 mEq/d. There was a linear and inverse association with the composite outcome among those with urinary SO₄ levels below this range.

Because urinary sulfate is tightly linked with protein intake, we evaluated the association between protein intake tertiles and the composite outcome in these participants. The model used here adjusted for the same variables as in model 4, excluding protein intake. Compared to those in the lowest tertile, there was no appreciable difference in the hazard of the composite outcome among those in the middle tertile (HR 0.86, 95% CI, 0.64-1.15) or the highest tertile (HR 0.98, 95% CI, 0.67-1.45) of protein intake.
Discussion:

Sulfur is an essential mineral; however, sulfur's primary dietary source is animal protein. Due to its link with protein intake, we postulated that higher urinary SO₄ would be associated with greater risk of adverse outcomes in individuals with CKD. Although urinary SO₄ was directly associated with protein intake, higher urinary SO₄ was not associated with loss of kidney function or mortality among AASK participants. On the contrary, those in the highest tertile of urinary SO₄ had around 45% lower hazard of CKD progression or death during follow-up after adjusting for important confounders such as measured GFR, protein intake, and potassium intake. The observation that urinary SO₄ and protein intake were strongly correlated yet only SO₄ was associated with risk of adverse clinical events suggests that SO₄ exerts its effects independently of protein intake. These findings are similar to those observed in kidney transplant recipients in whom higher urinary SO₄ was associated with lower mortality and graft failure.²⁷, ²⁸ Similarly, individuals with diabetes and higher urinary SO₄ levels had lower risk of CKD progression.²⁹, ³⁰ Thus, higher urinary SO₄ is associated with more favorable outcomes in individuals with CKD.

There are several potential reasons why higher urinary SO₄ is associated with more favorable outcomes in CKD. First, urinary SO₄ excretion was higher in individuals with higher GFR. Thus, individuals with less severe CKD may not have been advised to reduce dietary protein intake, or may have had preserved sulfate clearance due to higher GFR. On the other hand, those with lower urinary SO₄ could have been consuming a low protein diet or have impaired SO₄ excretion with SO₄ accumulation. Another potential explanation is that those with lower GFR may accumulate uremic toxins and medications that are metabolized through sulfation pathways. Hence, low urinary SO₄ could be a sign of increased proximal SO₄ reabsorption via the sodium-sulfate co-transporter (NaS1) to meet these metabolic demands. Nevertheless, we observed a strong and statistically significant association between higher urinary SO₄ and lower risk of CKD progression or death even after adjusting for both protein
intake and GFR. Importantly, GFR was measured, and not estimated, in AASK participants increasing confidence in the findings.

Another possibility is that urinary SO₄ reflects total body sulfur abundance and lower urinary sulfate excretion could signal a state of sulfur deficiency. Sulfur is a component of a variety of important molecules including the sulfur containing amino acids methionine and cysteine. Methionine is an essential amino acid, whereas cysteine can be synthesized as long as sulfur is available. Sulfur is principally stored as glutathione, and sulfur deficiency may favor cysteine and protein synthesis at the expense of other molecules such as glutathione. Glutathione is a powerful antioxidant whose activity decreases with protein restriction. Lower glutathione levels are associated with greater reperfusion injury in acute kidney injury in animal models and humans, and glutathione suppresses prostaglandin synthesis pathways. In addition, glutathione plays a role in regulating cholesterol. For example, diets supplemented with sulfur-containing amino acids increased levels of reduced glutathione and lowered serum cholesterol. Sulfur is also an elemental component of hydrogen sulfide, an endogenous neuromodulator. In animal models of kidney disease, exogenous administration of hydrogen sulfide reduced oxidative stress and promoted anti-inflammatory pathways. Thus, lower urinary sulfate levels may signal a state of sulfur deficiency that adversely affects the production and function of important regulatory molecules and pathways. While important for metabolism, sulfur in excess can cause gastrointestinal side effects and neurotoxicity.

Despite a strong correlation between urinary SO₄ and protein intake, there was no correlation of SO₄ with NEAP. There was, however, a modest association between urinary SO₄ and urinary potassium excretion suggesting that alkali precursors ameliorate the effect of dietary acid load from protein. We calculated protein intake using urinary urea excretion, which does not discriminate between plant and animal protein sources. Others have found that lower fruit and vegetable intake correlated with high NEAP and was associated with more rapid
progression of CKD when protein intake was assessed by food diaries rather than urinary urea excretion.46-48 Dietary diaries were not performed in AASK. Nevertheless, quantification of protein intake from urea nitrogen is a standard approach. However, it does not distinguish between animal- and vegetable-derived protein.

Sulfate is the end-product of sulfur metabolism, irrespective of whether it comes from organic or inorganic sources. Sulfites are often added to dried produce, processed meats, and other foods, but it is difficult to distinguish the quantity or proportion of SO\textsubscript{4} derived from these food additives. However, sulfites are generally thought to be more harmful than beneficial in human health, as they can worsen allergies, asthma, and cause intestinal inflammation,49, 50 and therefore unlikely to explain the findings. Other limitations of this study include its retrospective nature. Despite our best efforts to control for potential confounders, residual confounding may still be present and we cannot prove causation. AASK included African Americans with CKD attributed to hypertension, which could affect the generalizability of this study. However, similar findings have been observed in other cohorts such as individuals with diabetes or those who have received a kidney transplant. We are unaware if participants were instructed to be on a low protein diet. Nevertheless, our findings were observed after adjusting for protein intake, and protein intake itself was not associated with an increased risk of CKD progression or death here. We cannot completely rule out the possibility that low urinary SO\textsubscript{4} reflects reduced filtration of SO\textsubscript{4} due to lower GFR. Plasma SO\textsubscript{4} levels could help determine if this were the case; however, measuring plasma SO\textsubscript{4} levels requires advanced techniques that are beyond the scope of this study. Despite these limitations, this study has important strengths. AASK is a well-characterized cohort with a large sample size, carefully collected prospective data, and long-term follow-up. Furthermore, GFR was directly measured rather than estimated, which is particularly important given the strong association between kidney function and the outcomes of interest.
In conclusion, higher urinary SO₄ levels are associated with more favorable kidney and patient survival in AASK participants. Similar findings have been observed in individuals with diabetes and those who have received a kidney transplant. Future studies investigating the role of sulfur on health in patients with kidney disease are warranted.

Disclosures, Funding, and Acknowledgements.

Dr. Raphael has served as a consultant for AstraZeneca. Dr. Raphael is supported by the Department of Veterans Affairs (I01 CX001695).

This study was funded by the Harold Amos Medical Faculty Development Program of the Robert Wood Johnson Foundation. Portions of these data were included in a poster presentation at Kidney Week 2016.

References

23. Appel LJ, Wright JT, Jr., Greene T, et al. Long-term effects of renin-angiotensin system-blocking therapy and a low blood pressure goal on progression of hypertensive chronic kidney

Table 1: Baseline characteristics by tertiles of urinary sulfate.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Urine SO₄ (mEq/d)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Population</td>
<td>Tertile 1</td>
</tr>
<tr>
<td></td>
<td>n=1057</td>
<td>n=353</td>
</tr>
<tr>
<td>Urine SO₄ (mEq/d)*</td>
<td>26.3 (17.6-37.4)</td>
<td>14.8 (11.1-17.6)</td>
</tr>
<tr>
<td>Age, years</td>
<td>54 (11)</td>
<td>55 (11)</td>
</tr>
<tr>
<td>Male, %</td>
<td>61</td>
<td>46</td>
</tr>
<tr>
<td>Heart disease, %</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Past smoker, %</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Never smoker, %</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>150 (24)</td>
<td>152 (26)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>31 (7)</td>
<td>29 (7)</td>
</tr>
<tr>
<td>Protein intake, gm/d</td>
<td>69 (26)</td>
<td>48 (13)</td>
</tr>
<tr>
<td>Protein intake, gm/kg/day</td>
<td>0.78 (0.24)</td>
<td>0.59 (0.15)</td>
</tr>
<tr>
<td>NEAP, mEq/d</td>
<td>82 (37)</td>
<td>86 (44)</td>
</tr>
<tr>
<td>ACE-I/ARB use, %</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Diuretic use, %</td>
<td>64</td>
<td>61</td>
</tr>
<tr>
<td>Measured GFR, ml/min per 1.73m²</td>
<td>47 (14)</td>
<td>43 (14)</td>
</tr>
<tr>
<td>GFR < 30 ml/min per 1.73m², %</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Urine protein:creatinine, mg/g*</td>
<td>81 (30-350)</td>
<td>108 (41-518)</td>
</tr>
<tr>
<td>Total CO₂, mEq/L</td>
<td>25.1 (3.0)</td>
<td>24.8 (3.2)</td>
</tr>
<tr>
<td>Total CO₂ < 22 mEq/L, %</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>K⁺, mEq/L</td>
<td>4.2 (0.6)</td>
<td>4.3 (0.7)</td>
</tr>
<tr>
<td>Serum anion gap, mEq/L</td>
<td>10.0 (2.4)</td>
<td>10.3 (2.6)</td>
</tr>
<tr>
<td>Urine NH₄, mEq/d*</td>
<td>19.5 (13.2-28.1)</td>
<td>13.2 (8.7-18.3)</td>
</tr>
<tr>
<td>Urine PO₄ (mg/d)</td>
<td>63.3 (30.2)</td>
<td>39.9 (16.4)</td>
</tr>
</tbody>
</table>

*Presented as median with interquartile range
Abbreviations: SBP, systolic blood pressure; BMI, body mass index; NEAP, net endogenous acid production; ACE-I, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; GFR, glomerular filtration rate
Table 2: Number and incidence rate (per 1000 patient-years) of the composite outcome of death, dialysis, or 50% reduction in measured glomerular filtration rate.

<table>
<thead>
<tr>
<th>Daily SO₄ excretion</th>
<th>Number of events</th>
<th>Follow-up time (patient-years)</th>
<th>Incidence rate (95% CI) (per 1000 patient-years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertile 1</td>
<td>137</td>
<td>1383</td>
<td>99 (84-117)</td>
</tr>
<tr>
<td>Tertile 2</td>
<td>109</td>
<td>1489</td>
<td>73 (61-88)</td>
</tr>
<tr>
<td>Tertile 3</td>
<td>94</td>
<td>1467</td>
<td>64 (52-78)</td>
</tr>
<tr>
<td>Total</td>
<td>340</td>
<td>4340</td>
<td>78 (70-87)</td>
</tr>
</tbody>
</table>
Table 3: Unadjusted and adjusted hazard ratios of the composite outcome of death, dialysis, or 50% reduction in measured glomerular filtration rate (GFR); death alone; and dialysis or 50% reduction in GFR by tertiles of urinary sulfate excretion. The lowest tertile served as the reference group.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Urinary SO₄</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tertile 1</td>
<td>Tertile 2</td>
<td>Tertile 3</td>
</tr>
<tr>
<td>Death, dialysis, or 50% reduction in GFR</td>
<td>Hazard Ratio (95% CI)</td>
<td>Hazard Ratio (95% CI)</td>
<td>Hazard Ratio (95% CI)</td>
</tr>
<tr>
<td>Model 1</td>
<td>Reference</td>
<td>0.72 (0.56-0.92)</td>
<td>0.63 (0.49-0.82)</td>
</tr>
<tr>
<td>Model 2</td>
<td>Reference</td>
<td>0.77 (0.60-1.00)</td>
<td>0.69 (0.52-0.93)</td>
</tr>
<tr>
<td>Model 3</td>
<td>Reference</td>
<td>0.73 (0.55-0.97)</td>
<td>0.56 (0.37-0.84)</td>
</tr>
<tr>
<td>Model 4</td>
<td>Reference</td>
<td>0.73 (0.55-0.96)</td>
<td>0.56 (0.37-0.84)</td>
</tr>
<tr>
<td>Death</td>
<td>Model 4</td>
<td>Reference</td>
<td>0.75 (0.43-1.30)</td>
</tr>
<tr>
<td>Dialysis or 50% reduction in GFR</td>
<td>Model 4</td>
<td>Reference</td>
<td>0.73 (0.53-1.01)</td>
</tr>
</tbody>
</table>

Model 1: unadjusted
Model 2: adjusted for age, sex, randomized treatment group, measured GFR, urine protein/creatinine, body mass index, and serum total CO₂
Model 3: adjusted for model 2 variables and protein intake, urinary potassium, urinary phosphate, and serum phosphate.
Model 4: adjusted for model 2 variables and systolic blood pressure, heart disease, and smoking.
Figure 1: Relationship between measured glomerular filtration rate (GFR) and A) urinary SO₄, B) protein intake, C) urinary potassium, and D) net endogenous acid production (NEAP) at baseline.

Figure 2: Correlation between urinary sulfate and A) protein intake, B) urinary potassium, C) net endogenous acid production (NEAP), and D) serum total CO₂ at baseline.

Figure 3: Kaplan Meier event free survival plot by tertiles of urine sulfate.

Figure 4: Cubic spline regression plot of the association between urinary SO₄ and the primary composite outcome of death, dialysis, or 50% reduction in measured glomerular filtration rate (GFR). The solid line represents the hazard ratio and the dashed lines represent the 95% confidence intervals. The median value (26.3 mEq/d) served as the reference point. Adjusted for age, sex, randomized treatment group, measured GFR, urinary protein/creatinine, body mass index, serum total CO₂, protein intake, urinary potassium, urinary phosphate, serum phosphate, systolic blood pressure, heart disease, and smoking.
Figure 1: Box plots showing the distribution of urinary SO₄ (A), protein intake (B), Urine K (C), and NEAP (D) across different GFR categories: GFR ≥ 60, GFR 45-59, GFR 30-44, and GFR <30.

- In panel A, the urinary SO₄ levels are significantly different across GFR categories (p < 0.001).
- In panel B, the protein intake is also significantly different across GFR categories (p < 0.01).
- In panel C, the Urine K levels are significantly higher in the GFR ≥ 60 group compared to the GFR <30 group (p = 0.01).
- In panel D, the NEAP levels do not show a significant difference across GFR categories (p = 0.27).
Figure 2

A: Protein Intake (g/d) vs. Urine SO₄ (mEq/d) with a correlation coefficient of r=0.84.

B: Urine K (mEq/d) vs. Urine SO₄ (mEq/d) with a correlation coefficient of r=0.53.

C: NEAP (mEq/d) vs. Urine SO₄ (mEq/d) with a correlation coefficient of r=0.02.

D: Serum total CO₂ (mEq/L) vs. Urine SO₄ (mEq/d) with a correlation coefficient of r=0.08.
Figure 3

Death, dialysis, or GFR event

Event free survival (%)

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Tertile 1</th>
<th>Tertile 2</th>
<th>Tertile 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>36</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>48</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number at risk

- Tertile 1: 353
 - 342
 - 306
 - 273
 - 182
 - 94
- Tertile 2: 352
 - 345
 - 325
 - 296
 - 202
 - 125
- Tertile 3: 352
 - 338
 - 317
 - 297
 - 212
 - 114

Log-rank p < 0.01
Death, dialysis, or 50% GFR reduction