How to Cite this article: Nathaniel Reisinger and Abhilash Koratala, Quantitative Lung Ultrasonography for the Nephrologist: Applications in Dialysis and Heart Failure, Kidney360, Publish Ahead of Print, 10.34067/KID.0003972021

Article Type: Review Article

Quantitative Lung Ultrasonography for the Nephrologist: Applications in Dialysis and Heart Failure

DOI: 10.34067/KID.0003972021

Nathaniel Reisinger and Abhilash Koratala

Key Points:
*
*
*

Abstract:
Volume overload and its attendant increase in acute care utilization and cardiovascular morbidity and mortality represents a critical challenge for the practicing nephrologist. This is particularly true among patients with ESKD on HD where pre-dialysis volume overload and intradialytic and postdialytic hypovolemia account for almost a third of all cost for the Medicare dialysis benefit. Quantitative lung ultrasound is a tool for assessing the extent of extravascular lung water which outperforms physical exam and plain chest radiography. B-lines are vertical hyperechoic artifacts present in patients with increased extravascular lung water. B-lines have been shown to decrease dynamically during the hemodialysis treatment in proportion to ultrafiltration volume. Among patients with chronic heart failure, titration of diuretics based on the extent of pulmonary congestion noted on lung ultrasonography has been shown to decrease recurrent acute care utilization. Early data from randomized-controlled trials of lung ultrasound-guided ultrafiltration therapy among patients with ESKD on HD have shown promise for potential reduction in recurrent episodes of decompensated heart failure and cardiovascular events. Ultimately lung ultrasound may predict those who are ultrafiltration tolerant and could be used to decreased acute care utilization and thus cost in this population.

Disclosures: The authors have nothing to disclose.

Funding:

Author Contributions: Nathaniel Reisinger: Writing - original draft; Writing - review and editing Abhilash Koratala: Writing - review and editing

Data Sharing Statement:

Clinical Trials Registration:

Registration Number:

Registration Date:

The information on this cover page is based on the most recent submission data from the authors. It may vary from the final published article. Any fields remaining blank are not applicable for this manuscript.

Copyright 2021 by American Society of Nephrology.
Quantitative Lung Ultrasonography for the Nephrologist: Applications in Dialysis and Heart Failure

Nathaniel Reisinger¹ and Abhilash Koratala²

¹University of Pennsylvania, Philadelphia, Pennsylvania, USA
²Medical College of Wisconsin, Milwaukee, Wisconsin, USA

Corresponding Author’s Contact Information:

Nathaniel Reisinger, MD
Perelman School of Medicine
Hospital of the University of Pennsylvania
Division of Renal, Electrolyte and Hypertension
3400 Spruce St 1 Founders
Philadelphia, PA, USA 19104

Email: nathaniel.reisinger@pennmedicine.upenn.edu
Abstract:
Volume overload and its attendant increase in acute care utilization and cardiovascular morbidity and mortality represents a critical challenge for the practicing nephrologist. This is particularly true among patients with ESKD on HD where pre-dialysis volume overload and intradialytic and postdialytic hypovolemia account for almost a third of all cost for the Medicare dialysis benefit. Quantitative lung ultrasound is a tool for assessing the extent of extravascular lung water which outperforms physical exam and plain chest radiography. B-lines are vertical hyperechoic artifacts present in patients with increased extravascular lung water. B-lines have been shown to decrease dynamically during the hemodialysis treatment in proportion to ultrafiltration volume. Among patients with chronic heart failure, titration of diuretics based on the extent of pulmonary congestion noted on lung ultrasonography has been shown to decrease recurrent acute care utilization. Early data from randomized-controlled trials of lung ultrasound-guided ultrafiltration therapy among patients with ESKD on HD have shown promise for potential reduction in recurrent episodes of decompensated heart failure and cardiovascular events. Ultimately lung ultrasound may predict those who are ultrafiltration tolerant and could be used to decreased acute care utilization and thus cost in this population.
Introduction:
Volume overload is one of the most vexing problems in nephrology and its assessment the most difficult. Nephrologists and patients with end-stage kidney disease (ESKD) are locked in a constant, cataclysmic struggle to control volume overload and mitigate complications of relative hypovolemia complicating judicious ultrafiltration.

Volume overload is a mediator of adverse cardiovascular outcomes in patients with ESKD on hemodialysis (HD) and is attended by increased and recurrent acute care utilization.1,2 In the United States, ESKD care is covered under Medicare and while patients with ESKD constitute only 1% of Medicare beneficiaries, they constitute 7% of all costs. At $36 billion per year this is close to the total annual budget of the National Institutes of Health and nearly 1% of the annual budget of the United States federal government.3 Acute care utilization constitutes about 30% of the cost of ESKD care representing the largest modifiable cost for patients who will remain on in-center hemodialysis. Cardiovascular events especially heart failure admissions are responsible for an outsized proportion of these events.4 Cost is especially dear for local institutions as the Centers for Medicare & Medicaid Services (CMS) reins in spending for repeat heart failure admissions.

It stands to reason that intimate knowledge of the presence of pulmonary congestion could be used to presage acute care utilization and mitigate its risk with extra ultrafiltration, additional ultrafiltration sessions, or titration of anti-hypertensives.5 However, physical examination signs of volume overload such as rales and edema are insensitive for the prediction of the presence of pulmonary congestion.6 Indeed, the presence of pedal edema correlates better with cardiac risk factors particularly BMI rather than being indicative of volume expansion.7 Even chest x-ray is insensitive for the detection of pulmonary congestion.8 Dry weight probing is limited by other factors influencing weight.

Technical Aspects:
The appearance of normal lung parenchymal architecture is obscured by the presence of reverberation artifacts arising from high acoustic impedance mismatch at the pleural-alveolar interface as sound waves pass from water density (skin and soft tissue) to air density (in the alveolar sac).9 In patients without pathology, the usual appearance of the lung is termed the A-line pattern which consists of horizontally oriented reflections of the hyperechoic pleural line at integer multiples of the pleural depth [Figure 1]. With increasing pulmonary congestion there is a shift from a normal horizontally oriented A-line pattern to a vertically oriented B-line pattern. B-lines are discrete laser-like hyperechoic lines that radiate to the edge of the ultrasound field and move with respiration [Figure 2].10 B-lines can be tallied serially across multiple intercostal spaces across the chest allowing quantification of pulmonary congestion with the 28-zone anterior lung ultrasound the most validated for research purposes.11 The more B-lines counted across the chest, the more the pulmonary congestion correlating with extra-vascular lung water as measured by thermodilution.12–14 Quantitative lung ultrasound has been reliably shown to have good inter-rater reliability and concordance using different ultrasound transducers.15 Any transducer can be used, but the most optimal images are captured when the focal depth is set at the pleural line with increasing gain in the far field and harmonics turned off.16 Quantitative
Lung ultrasound is predictive of acute cardiogenic pulmonary edema in the emergency department and outperforming the physical exam and even chest x-ray.\(^8,^{17}\) Lung ultrasound is also sensitive for the presence of pleural effusions which appear as anechoic structures which allow passage of the ultrasound beam and interdigitate between lung and diaphragm [Figure 3].\(^18\) Lung ultrasound can be taught easily using a remote, web-based application and can be incorporated in the outpatient setting with an abbreviated 8-zone protocol which can be obtained in less than 2 minutes.\(^{19,20}\)

Lung ultrasound measures pulmonary congestion, volume overload in the organ of interest, and is posited to identify those tolerant of ultrafiltration.\(^{21}\) This stands in contrast to other putative markers of volume overload such as bioimpedance or blood volume monitoring devices which can only estimate pulmonary congestion based on total extracellular and intracellular volumes or intravascular volume respectively.\(^{21}\)

Comparison with Physical Examination:
In a study performed by Torino and colleagues writing in CJASN in 2016, 79 patients were enrolled and serial examinations with 28-zone lung ultrasound as well as physical examination with assessment for lung crackles and pedal edema were undertaken representing 1106 paired examinations.\(^6\) Overall, detection of pulmonary congestion by assessment for lung crackles or pedal edema was very poor with low sensitivity and specificity. 65% of lung ultrasound examinations demonstrated significant pulmonary congestion whereas crackles were present in only 21% and pedal edema was present in only 10% of patients. Crackles were absent in fully half of those with severe pulmonary congestion and were present in 5% of those with no pulmonary congestion. Edema was absent in 80% of evaluations with severe pulmonary congestion. Even a composite score from combination of crackles and edema only improved area under the receiver-operator characteristic curve for prediction of mild, moderate, and severe pulmonary congestion to 0.60, 0.65, and 0.68 respectively. The sensitivity of lung crackles and pedal edema to detect severe pulmonary congestion was 9% and 3% respectively. This dramatic demonstration of the poor sensitivity of traditional physical exam markers of volume overload in hemodialysis patients would seem to indicate the need for a paradigm shift in volume status assessment in the dialysis unit. However, as Richard Sherman points out in an accompanying editorial, pulmonary congestion may occur in hemodialysis patients irrespective of volume status.\(^{22}\)

Abbreviated Lung Ultrasound:
While providing excellent diagnostic and prognostic data, the reference standard 28-zone lung ultrasound has been criticized by Koratala and Ross as cumbersome and inconvenient.\(^{23}\) Efforts to simplify the 28-zone study have been undertaken by Torino and colleagues.\(^{20}\) They reanalyzed data from 303 of the original 392 hemodialysis patients studied by Zoccali\(^{24}\) and found that a simplified 8-zone lung ultrasound had good agreement with the 28-zone lung ultrasound and remained predictive of mortality (\(P < 0.01\)) and cardiovascular events (\(P \leq 0.05\)).\(^{20}\) The overall time needed to perform the study was cut from 3.05 minutes [IQR 2.22 - 5.00 minutes] for the 28-zone lung ultrasound to 1.35 minutes [IQR 1.16 - 2.00 minutes] for the 8-zone lung ultrasound.\(^{20}\) Buessler and colleagues demonstrated that among patients with
suspected acute decompensated heart failure, simplified 6-zone or 8-zone lung ultrasound studies improve diagnosis accuracy over a prediction score based on clinical parameters. Finally, in a study of 98 hemodialysis patients presenting to acute care, Reisinger and coauthors showed good agreement of 12 different simplified scanning patterns including four 4-zone, four 6-zone, and four 8-zone lung ultrasound studies with the 28-zone lung ultrasound study. They posit that a simplified heuristic of a B-line every other lung zone is suggestive of at least moderate pulmonary congestion and advocate the use of the 4-zone lung ultrasound which has AUC of up to 0.91 for prediction of the total B-line score.

Limitations:
Quantitative lung ultrasonography has limitations in assessing extent of pulmonary congestion. Patients with diffuse parenchymal lung diseases such as idiopathic pulmonary fibrosis typically have findings of increased B-lines thought to originate from fibrosis at the level of the pulmonary alveolar interstitium. Other alveolar filling processes apart from pulmonary congestion can present with increased B-lines such as the acute respiratory distress syndrome (ARDS). Though B-lines are common in both ARDS and pulmonary congestion, ARDS can often be distinguished from pulmonary congestion based on the presence of pleural line abnormalities, reduction in lung sliding, spared areas, and consolidations. Viral pneumonias notably including COVID-19 present with similar lung ultrasound findings with thickened or irregular pleural lines, subpleural consolidations, and patches of confluent B-lines with spared areas limiting interpretations of quantitative lung ultrasound [Figures 4 and 5]. Patients with severe lung disease preventing interpretation of lung ultrasound have been excluded from large clinical trials, limiting generalizability to these patients. Finally, as with any physical exam or clinical ultrasound finding, lung ultrasound should never be interpreted in isolation and the addition of focused cardiac assessment and abdominal venous Doppler studies may add significantly to knowledge of the patient’s hemodynamic status.

Observational Studies:
The first documented use of lung ultrasound among dialysis patients was by Noble and colleagues writing in Chest in 2009. They presented an observational cohort of 40 patients with ESKD chronically on HD admitted at a tertiary care center and performed 28-zone lung ultrasound before, during, and after hemodialysis. They found that asymptomatic pulmonary congestion is highly prevalent (34 of 40 patients) despite low prevalence of dyspnea (3 of 34 patients with significant pulmonary congestion). Further they demonstrated that B-line score decreases quantitatively and dynamically in real time during hemodialysis in proportion to ultrafiltration volume. All patients with an initial B-line score of greater than 1 (34 of 40) had a statistically significant reduction in B-line score during a single hemodialysis treatment P < 0.001.

Since the original demonstration, multiple studies have confirmed the relationship of pulmonary congestion as measured by lung ultrasound among patients with ESKD on chronic dialysis. Further, pulmonary congestion as measured by lung ultrasound in patients with ESKD on HD was found to be an excellent prognostic marker correlating with poor physical functioning and adverse cardiovascular outcomes in observational studies. Siriopol and
colleagues were the first to demonstrate an association with increasing pulmonary congestion as measured by quantitative lung ultrasound among patients with ESKD on HD, outperforming bioimpedance-derived parameters. To date Zoccali and coauthors reported the largest observational cohort with 392 hemodialysis patients demonstrating that patients with very severe pulmonary congestion have a hazard ratio of 4.2 [95% CI = 2.45 - 7.23] for death and hazard ratio of 3.2 [95% CI = 1.75 - 5.88] for cardiovascular events compared with patients with mild to no pulmonary congestion. They further demonstrated dose-dependence with patients with the most severe congestion having highest risk of adverse cardiovascular outcomes or death and those with moderate to severe pulmonary congestion having intermediate elevations in risk (HR = 1.70; 95% CI = 1.00 - 2.80) compared with those with mild to no pulmonary congestion P < 0.001. They demonstrated improved risk reclassification when adding extent of pulmonary congestion to traditional risk factors for cardiac events for patients with CKD (10%, P = 0.015) but not for predicting all-cause mortality.

Interventional Studies:
In the first interventional study of its kind, Siriopol and colleagues evaluated the effect of a lung ultrasound guided dry weight probing strategy on a low cardiovascular risk subset of patients with ESKD on HD. This study enrolled 250 patients excluding those NYHA class III-IV heart failure and coronary disease and randomized them 1:1 to usual care versus a dry weight probing strategy employing lung ultrasound. At an average follow up of 21.3 ± 5.6 months there was no difference in the primary composite endpoint (all-cause death and cardiovascular events) or secondary endpoints including intradialytic hypotension and hospitalizations. Patients in the active arm did have lower rates of predialytic dyspnea (HR 0.81; 95% CI, 0.68 - 0.96), however they had an increased rate of intradialytic cramping (1.26; 95% CI, 1.16 - 1.37). Notably, the median B-line score in the active group was 7 (interquartile range 3 - 12) and a B-line score ≥ 15 occurred in only 15.4% of patients. Moreover, for every 1 dry weight decrease there were 3 dry weight increases in response to evidence of hypovolemia detected by bioimpedance. In other words, patients were 3 times more likely to be assessed as hypovolemic based on bioimpedance data than they were to be assessed as hypervolemic based on lung ultrasound data. Most patients were volume depleted rather than volume overloaded. This limits the interpretability of this negative result as the intervention of interest only occurred in only 15% of patients and most patients had minimal pulmonary congestion to start with based on lung ultrasound.

More recently, Loutradis and coauthors described a single-blind, randomized study in which 71 patients were randomized to usual care versus lung-ultrasound guided dry weight reduction. 48-hour ambulatory blood pressure monitoring was undertaken before the intervention and 8 weeks after. In the primary outcome, the authors demonstrated statistically significant reductions in 48-hour systolic blood pressure in the interventional group -6.61 ± 9.57 versus -0.67 ± 13.07 (P = 0.033) in the control group and diastolic blood pressure -3.85 ± 6.34 in the interventional group versus -0.55 ± 8.28 (P = 0.031) in the control group. Exploratory outcomes of changes in echocardiographic parameters also showed improvement including reductions in inferior vena cava diameter (−0.43 ± 4.00 versus 0.71 ± 4.82, P = 0.03), left atrial surface area (−1.09 ± 4.61 versus 0.93 ± 3.06 cm², P = 0.03), and left ventricular filling pressures
E/e’ (−0.38 ± 3.14 versus 1.36 ± 3.54, P = 0.03) in the control group compared with standard of care. As expected, more patients in the interventional group achieved greater dry weight reduction (54.3% versus 13.9%, P < 0.001) and over the course of the study total B-line score fell (-5.31 ± 12.53 versus 2.17 ± 7.62, P < 0.001). The study was not powered to explore outcomes such as hospital admission or mortality; however, in the follow up period, one patient from the intervention group and one from the control group died of central nervous system infection and lung infection respectively. There were 5 hospitalizations, 2 in the intervention group (for hematuria and mechanical central venous catheter failure) and 3 in the control group (for hematuria, gastrointestinal bleeding, and lung infection). None of these are expected complications of hypovolemia and no access thromboses were observed which was increased in the CLIMB study evaluating dry weight probing using a blood volume monitoring device.

Agarwal and colleagues have criticized this study as the control group failed to conform to the standard of care of initial dry weight probing for reduction in blood pressure. Despite achieving less net ultrafiltration, more patients in the control arm developed intradialytic hypotension than the intervention group, though this was not statistically significant, (56% versus 34% P = 0.07). This trend reversal may lend credence to the idea that lung ultrasound detection of pulmonary congestion predicts ultrafiltration tolerance. While this study was not powered to predict adverse cardiovascular outcomes or mortality, the Frequent Hemodialysis Network study demonstrated a hazard ratio of 0.61 [95% CI 0.53 – 0.92] in the primary composite outcome of all-cause mortality and left ventricular hypertrophy (LVH), a finding which is presaged by echocardiographic indicators of filling pressure.

After a delay due to enrollment kinetics, the results of the LUST study (Lung Water by Ultrasound Guided Treatment in Hemodialysis Patients) were recently reported by Zoccali and colleagues writing in Kidney International. The LUST study was a single-blind randomized controlled trial of a lung ultrasound guided ultrafiltration strategy versus usual care in patients with ESKD on HD with comorbid cardiovascular disease including prior myocardial infarction and cardiomyopathy with New York Heart Association Class III-IV heart failure. Patients in the interventional group underwent an initial and monthly 28-zone lung ultrasound. Those identified to have moderate to severe pulmonary congestion (B-line score of 15 or more) were targeted for ultrafiltration intensification. Lung ultrasound was repeated weekly until the goal B-line score less than 15 (representing mild to no pulmonary congestion) was achieved. Patients not achieving the target B-line score within 3-4 weeks had intensification of anti-hypertensive therapy according to a pre-specified formulary. The study was powered to detect a 33% risk reduction in its primary composite outcome including all-cause death, non-fatal myocardial infarction, or decompensated heart failure.

The study was concluded and published having enrolled 363 patients out of a targeted enrollment of 500. 307 patients completed the study including 152 in the intervention group and 155 in the control group. At a mean follow up of 1.5 years there was no significant difference in the primary composite endpoint (HR 0.88; 95% CI 0.63 - 1.24). 51 (28%) patients in the interventional arm died versus 59 (33%) in the usual care group (HR 0.99; 95% CI 0.61 -
1.29). Despite not meeting the target enrollment, the study demonstrated reduction in B-line score in the intervention arm from a baseline of 15 B-lines on enrollment (95% CI 12-19) to 9 at study end (95% CI 5-12) compared with those in the control arm who had worsening pulmonary congestion with baseline B-line score of 16 (95% CI 13-20) rising to 30 at study end (95% CI 20-39). While there were no differences in pre- or post-dialysis blood pressures or left-ventricular mass index, ambulatory blood pressure monitoring was not undertaken as in the study by Loutradis. The intervention was demonstrated to be safe with less intradialytic hypotension in the interventional group 320 events per 100 patient-years in (95% CI 300-342) versus 473 events per 100 patient-years (95% CI 448-500). There were no differences in rates of hemodialysis vascular access dysfunction or arrhythmias. Indeed, the key finding of the study is that a lung ultrasound guided ultrafiltration strategy safely resolved lung congestion when compared to standard of care among patients with end-stage kidney disease on hemodialysis.

In a reflection on completion of the study, given the incidence rate of the primary outcomes, the authors realized the power calculation was overly optimistic. A post hoc analysis of the study was undertaken which demonstrated reductions in recurrent episodes of decompensated heart failure (HR 0.37; 95% CI 0.15 - 0.93) and cardiovascular events (HR 0.63; 95% CI 0.41 - 0.97) among patients in the interventional group. This nominally represents a 12% decrease in the incidence rate of the composite outcome. If realized, these reductions in recurrent episodes of decompensated heart failure and cardiovascular events would dramatically decrease acute care utilization among patients with ESKD on HD proving ultrafiltration guided by lung ultrasound a useful intervention. Studies with higher enrollment and with extended length are needed to ascertain whether resolution of lung congestion improves cardiovascular outcomes.30,46

Prediction of Intradialytic Hypotension:
The LUST study demonstrated less intradialytic hypotension among outpatients with ESKD on hemodialysis. Among critically ill patients with acute kidney injury requiring intermittent hemodialysis, da Hora Passos and coauthors conducted a single-center prospective observation study of obtaining 28-zone lung ultrasound and inferior vena caval (IVC) diameters on 248 patients prior to each dialysis session. Patients with pulmonary congestion on lung ultrasound with and hypervolemia based on IVC distention were less likely to have intradialytic hypotension (odds ratio 0.08, 95% CI 0.036 - 0.176 P = 0.001) and were less likely to have dialysis discontinued (odds ratio 0.074, 95% CI 0.010 – 0.565 P = 0.012).47 In contrast, patients without pulmonary congestion and IVC distention had the highest incidence of IDH, though in general patients with IVC distention had less IDH irrespective of the presence or absence of pulmonary congestion. Following up on this result, Khanin and colleagues conducted a retrospective analysis of 113 patients in an intensive care setting undergoing hemodialysis with lung ultrasound pattern documented by the treating team on the same day.48 They found that patients with documentation of an A-line pattern (indicating a dry lung) had a higher incidence of intradialytic hypotension than those with an overriding B-line pattern (indicating a wet lung) with odds ratio 3.63 (95% CI 1.40 - 9.40) and odds ratio 3.01 (95% CI 1.10 - 8.22) after adjustment for APACHE score.48 These studies suggest that clinical ultrasound may be helpful in identifying patients tolerant of volume removal.
Quantitative Lung Ultrasound in Heart Failure:
Similar to what is seen among hemodialysis patients, pulmonary congestion is the number one driver of acute care utilization among heart failure patients. Pulmonary congestion as quantified by an 8-zone lung ultrasound among 185 ambulatory patients with chronic heart failure predicted a worse outcome for those in the highest tertile of B-lines with a 4-fold increase in a composite outcome including hospitalization for acute decompensated heart failure and all-cause mortality (adjusted hazard ratio 4.08, 95% CI 1.95 - 8.54, P < 0.001). In a study of 349 patients hospitalized with acute decompensated heart failure, pulmonary congestion as quantified using a further simplified 4-zone lung ultrasound decreased with diuretic therapy and predicted risk of recurrent heart failure hospitalization and all-cause death as far out as 180 days (hazard ratio 2.01, 95% CI 1.11 - 3.64).

Interventional studies of lung ultrasound-guided diuretic therapy have demonstrated reductions in composite outcomes consisting of recurrent acute care utilization, rehospitalization, and mortality mainly drive by reduced urgent visits for heart failure. In a single-blind trial of 123 patients admitted with acute decompensated heart failure who were randomized to usual care versus diuretic therapy guided by an 8-zone lung ultrasound study, patients in the study group had a hazard ratio of 0.518 [95% CI 0.268-0.998 P = 0.049] for a composite outcome of mortality, time to an urgent visit, and hospitalization for acute decompensated heart failure. This was primarily driven by reductions in urgent visits for worsening heart failure, as in individual analysis there were no differences in mortality or heart failure hospitalization. A larger unblinded study of 244 patients with chronic heart failure on optimal medical regimens comparing physical examination guided therapy to physical examination guided therapy augmented with lung ultrasound demonstrated reduction in hospitalization for acute decompensated heart failure among the lung ultrasound enhanced group with relative risk 0.44 (95% CI 0.23 - 0.84 P = 0.01). Again there was no difference in mortality. Most recently, a single-blinded randomized controlled trial of 126 patients comparing usual care to usual care with an 8-zone lung ultrasound study showed reduction in the composite outcome of urgent heart failure visits, rehospitalization for acute decompensated heart failure, and all-cause death (hazard ratio 0.55, 95% CI 0.31 - 0.98, P = 0.044). This was primarily driven by a reduction of urgent heart failure visits and there was no difference in rehospitalization rates or all-cause death. These studies enrolled primarily patients with heart failure with reduced ejection fraction and the largest effect was seen in the study by Marini which had the most patients with New York Heart Association Class III-IV heart failure. These results are of critical importance to practicing nephrologists who co-manage patients with heart failure and the cardiorenal syndrome and are increasingly assessed on metrics of acute care utilization in the context of value-based care models.

Conclusion:
Among patients with ESKD chronically on dialysis, pulmonary congestion is accurately measured by quantitative lung ultrasound and has been repeatedly demonstrated to predict adverse cardiovascular events. Quantification of pulmonary congestion may identify those dialysis patients who will respond well to ultrafiltration intensification. Post hoc analysis of the largest
interventional study to date revealed decreases in recurrent acute decompensated heart failure and cardiovascular events, but whether a lung ultrasound-guided ultrafiltration strategy reduces acute care utilization in this population is an active area of study. Among patients with chronic heart failure, adding lung ultrasound to usual care failure has been demonstrated in randomized controlled trials to reduce recurrent acute care utilization. If benefits of lung ultrasound guided ultrafiltration therapies can be proven among patients with ESKD on chronic dialysis, it represents significant potential for improvements in patient care as well as cost savings.

Disclosures: The authors have nothing to disclose.

Funding: None.

Author Contributions: Nathaniel Reisinger: Writing - original draft; Writing - review and editing. Abhilash Koratala: Writing - review and editing.

References:

Figures:

Figure 1: Lung ultrasound A-line pattern. Note the bright horizontal lines at integer multiples of the pleural depth and diminish in intensity with increasing depth.

Figure 2: Lung ultrasound B-lines. Note the hyperechoic vertical lines extending from the pleural line radiating to the edge of the ultrasound field.

Figure 3: Pleural effusion by ultrasound. Note the anechoic/space (asterisk) separating lung at left from the diaphragm at right.

Figure 4: Confluent B-lines on ultrasound. Note the confluence of the hyperechoic lines radiating from the pleural line and extending to the edge of the ultrasound field.

Figure 5: ARDS and viral pneumonia by ultrasound. Note the thickening, irregularity, and interruptions in the pleural line with hyperechoic artifacts radiating posteriorly giving the appearance of B-lines.