Randomized, Placebo-controlled Trial of Rifaximin Therapy for Lowering Gut-derived Cardiovascular Toxins and Inflammation in Chronic Kidney Disease

Cassandra Kimber1,2; Shiqin Zhang1,2; Cassandra Johnson1; Raymond E. West III3; Alexander J. Prokopienko3; Jonathan D. Mahnken1,4; Alan S. Yu1,2; Andrew N. Hoofnagle6; Diana Ir6; Charles E. Robertson6; Makoto Miyazaki7; Michel Choncho17; Anna Jovanovich7,8; Bryan Kestenbaum9,10; Daniel N. Frank6; Thomas D. Nolin3; Jason R. Stubbs1,2

1 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
2 Division of Nephrology & Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
3 Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
4 Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
5 Department of Laboratory Medicine, University of Washington, Seattle, WA
6 Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO
7 Division of Renal Medicine/Hypertension, University of Colorado Anschutz Medical Campus
8 Rocky Mountain Regional VA Medical Center
9 Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
10 Kidney Research Institute, Seattle, WA

Corresponding Author:
Jason R. Stubbs, M.D.
University of Kansas Medical Center
Division of Nephrology & Hypertension
3901 Rainbow Blvd, Mail Stop 3018
Kansas City, Kansas 66160
Email: jstubbs@kumc.edu
Phone: 913-588-5022
Fax: 913-588-3867
ABSTRACT

Background: Recent evidence suggests that the systemic accumulation of byproducts of gut microbes contributes to cardiovascular morbidity in patients with chronic kidney disease (CKD). Limiting the generation of toxic bacterial byproducts by manipulating the intestinal microbiota may be a novel strategy for reducing cardiovascular disease in CKD. Rifaximin is a minimally absorbed, oral antibiotic that targets intestinal pathogens and is commonly used as chronic therapy for the prevention of encephalopathy in patients with cirrhosis.

Methods: We conducted a randomized, double-blinded, placebo-controlled trial to determine the impact of a 10-day course of oral rifaximin 550 mg BID vs. placebo on circulating concentrations of gut-derived cardiovascular toxins and pro-inflammatory cytokines in patients with stage III-V CKD (n=38). The primary clinical outcome was change in serum trimethylamine N-oxide (TMAO) concentrations from baseline to study end. Secondary outcomes included: change in serum concentrations of p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines (C-reactive protein, interleukin-6, interleukin-1β), and change in composition and diversity of fecal microbiota.

Results: Nineteen patients were randomized to each of the rifaximin and placebo arms, with n=17 and n=14 completing both study visits in these respective groups. We observed no difference in serum TMAO change (post-therapy minus baseline TMAO) between the rifaximin and placebo groups (mean TMAO change -3.9 ± 15.4 for rifaximin vs 0.5 ± 9.5 for placebo, P=0.49). Similarly, we found no significant change in serum concentrations for p-cresol sulfate, indoxyl sulfate, kynurenic acid,
deoxycholic acid, and inflammatory cytokines. We did observe differences in colonic bacterial communities, with the rifaximin group exhibiting significant decreases in bacterial richness (Chao1, \(P<0.05 \)) and diversity (Shannon H, \(P=0.05 \)), along with altered abundance of several bacterial genera.

Conclusions: Short-term rifaximin treatment failed to reduce gut-derived cardiovascular toxins and inflammatory cytokines in patients with CKD.
INTRODUCTION

Patients with chronic kidney disease (CKD) demonstrate a disproportionate burden of cardiovascular disease compared to individuals with normal kidney function (1-5), which largely drives the excess morbidity and mortality observed in this group. Traditional risk factors alone fail to explain the extensive cardiovascular pathology that occurs in patients with CKD, implying that unique cardiovascular risk factors emerge with a loss of kidney function (6, 7).

Bacterial endotoxin (i.e. lipopolysaccharide), which is suspected to be of intestinal origin, is present in the bloodstream of patients with advanced-CKD (8). It is postulated that this endotoxemia stimulates innate immune responses and pro-inflammatory pathways that contribute to excess cardiovascular pathology in this population. Moreover, a variety of gut-derived bacterial metabolites with purported cardiovascular toxicity accumulate in the circulation of patients with CKD (9-14). P-cresol sulfate, indoxyl sulfate and trimethylamine N-oxide (TMAO) are well-established examples of such metabolites (9). In addition, deoxycholic acid is a secondary bile acid generated by gut bacteria that is elevated in CKD and has been recently associated with vascular calcification (12, 15). Likewise, kynurenic acid is a tryptophan metabolite that is generated under substantial influence by gut microbes (16), is associated with adverse cardiovascular outcomes in non-CKD populations (17), and exhibits serum concentrations that are increased in CKD (10).

Despite significant data to suggest a potential contribution of these compounds to cardiovascular disease, effective therapies for lowering the production of these potentially toxic metabolites are lacking (9, 14). Therapies that focus on decreasing the
generation of these bacterial metabolites and suppressing chronic inflammation could be a novel strategy for limiting cardiovascular pathology in these patients. Prior studies have suggested that suppressing the gut microbiota with antibiotics can dramatically lower the generation of several bacterial metabolites (18-20); however, administration of broad-spectrum antibiotics with systemic activity is not feasible as chronic therapy.

Rifaximin is a minimally absorbed, oral antibiotic that is concentrated in the gastrointestinal tract and demonstrates bactericidal and bacteriostatic activity against both Gram-positive and Gram-negative aerobic and anaerobic bacteria (21). Rifaximin has shown efficacy as chronic therapy in patients with advanced liver disease to suppress recurrent hepatic encephalopathy that partially stems from the systemic accumulation of neurotoxins derived from intestinal bacteria (22). Rifaximin is unique in that chronic administration appears to result in very limited disruption of the overall balance of the intestinal microbiome, while possibly enhancing the presence of symbiotic bacteria that promote intestinal health (23-26). Thus, in this study, we conducted a prospective, randomized, placebo-controlled trial to investigate the impact of short-term rifaximin therapy on circulating concentrations of bacterial metabolites and inflammatory cytokines with purported cardiovascular toxicity, along with the relative abundance of fecal microbial communities in patients with CKD.

MATERIALS AND METHODS

Study Participants

Participants were recruited from the University of Kansas Medical Center (KUMC) outpatient nephrology clinics from June 2015 to January 2017; recruitment was ended after meeting the prespecified enrollment target. Inclusion criteria included: ≥18
years of age, CKD with eGFR of ≤39 ml/min/1.73 m². Exclusion criteria included: inability or unwillingness to provide consent, patients receiving chronic dialysis, prior organ transplantation, pregnancy, hemodynamic instability, liver disease, pancreatic insufficiency, inflammatory bowel disease, active infection within the last month, history of *Clostridium difficile* infection, known abnormal bowel anatomy, current use of specific medications (immunosuppressants, bile acid sequestrants, antidiarrheal agents), and use of antibiotics within three months.

Study Design

This was a prospective, randomized, double-blinded, parallel clinical trial of rifaximin 550 mg versus placebo PO BID for 10 days in 38 patients (19 per arm) with advanced CKD (eGFR ≤39 ml/min/1.73m²). The 10-day duration of therapy was chosen based on prior studies showing: (1) a 7-day course of broad-spectrum antibiotics dramatically decreased circulating trimethylamine N-oxide (TMAO) in healthy humans (18), (2) a 7-day course of rifaximin lowered serum TMAO in CKD rodents (unpublished observation), and (3) a 7- to 10-day course of rifaximin in humans with irritable bowel syndrome (IBS) from small intestine bacterial overgrowth (SIBO) has been associated with a reduction in IBS symptoms and improvement in SIBO measurements (27, 28). The 550 mg BID dose was chosen based on data from a prominent clinical trial demonstrating efficacy of this regimen for the prevention of hepatic encephalopathy in patients with cirrhosis (22). The eGFR cutoff of ≤39 ml/min/1.73m² was derived from published data showing a dramatic increase in serum TMAO at an eGFR below this value (11).
The KUMC Investigational Pharmacy randomized patients in a 1:1 ratio using a computer-generated random assignment program and dispensed study drug. The physician investigators and study coordinators who handled enrollment procedures, sample collection/processing, and study documentation were blinded to treatment assignment for the entirety of the trial. Study drugs were compounded into identical-appearing formulations by a local compounding pharmacy. Pill bottles were collected at the final study visit and medication compliance was calculated as the percentage of missing tablets divided by the total tablets provided. Fasting blood and stool samples were collected at both study visits, processed immediately, and stored at -80°C until measurements were conducted. Fecal samples were collected by study participants at home within 24 hours of their study visits. Specimen containers were put in a sealed biohazard bag, immediately placed in the participant’s home freezer, then transported on ice to the study visit to preserve sample quality. **Figure 1** outlines the study design implemented for this investigation.

The primary endpoint was change in serum TMAO concentrations from baseline to study end (day 11). Secondary outcomes included: change in serum concentrations of p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, C-reactive protein (CRP), interleukin-6 (IL-6) and interleukin-1β, along with change in fecal bacterial composition. The study was conducted according to the guidelines outlined in the Declarations of Helsinki and all procedures involving human participants were approved by the Human Subjects Committee at KUMC. Written informed consent was obtained from all participants. The study was registered on January 21, 2015 at https://clinicaltrials.gov as study number NCT02342639. Deidentified data related to this
study, including additional patient demographics, laboratory tests, and supporting clinical trial documents, will be available upon request from the corresponding author following manuscript publication.

Metabolite Quantification

Serum TMAO concentrations were measured by ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) using heated electrospray ionization (positive mode) and selected reaction monitoring as previously described (29). The standard curve ranged from 0.010 – 5.00 µg/mL (0.13 – 66.6 µM). Samples that were above the upper limit of the standard curve were diluted in phosphate-buffered saline. The within-run and between-run coefficient of variation was <10%.

Serum deoxycholic acid concentrations were quantified using LC-MS/MS as described in a prior report (30). In brief, 100 µl serum was diluted in 300µl cold acetonitrile containing 3 ng of d6-DCA (Cambridge Isotope Laboratory) as internal standard. The mixture was passed through a Phree phospholipid removal plate (Phenomenex). The eluate was evaporated with nitrogen gas, then redissolved in 100µl of 10mM ammonium acetate buffer (pH 8.0)/methanol (1:1, v/v). A 10µl aliquot of each sample was then injected into LC/ESI–MS/MS system (QTRAP 3200, SCIEX).

Serum kynurenic acid, p-cresol sulfate and indoxyl sulfate concentrations were quantified by LC-MS/MS using previously published methods (13). Samples were precipitated in organic solvent, followed by solid phase extraction (Phree phospholipid removal plate). Dried extracts were reconstituted in 80 µL of 5% acetonitrile/0.2% formic acid in H2O and filtered through a large-pore filter plate (Millipore, MSBVN1210) to
remove particulates before introduction into a triple quadrupole tandem mass spectrometer (Sciex 6500). Data were normalized to internal standard peak areas of labeled solutes. Calibration was achieved using a single point calibration approach to account for drift, with five calibrator replicates included on each plate.

Measurement of serum inflammatory cytokines was performed using the following commercially available assays according to the manufacturer instructions: human CRP ELISA (Enzo Life Sciences, Farmingdale, NY; cat# ENZ-KIT102-0001), high-sensitivity human IL-6 ELISA (Thermo Fisher Scientific, Waltham, MA; cat# BMS213HS), high-sensitivity IL-1β ELISA (Thermo Fisher Scientific, Waltham, MA; cat# BMS224HS).

High-throughput DNA sequencing for microbiome analysis

Bacterial profiles were determined by broad-range amplification and sequence analysis of 16S rRNA genes following our previously described methods (31-33). In brief, amplicons were generated using barcoded primers targeting the V3V4 variable region of the 16S rRNA gene. Pooled amplicons were paired end sequenced (2x300 nt) on the Illumina Miseq platform and processed as previously described (31-33). Assembled sequences were aligned and classified with SINA (1.3.0-r23838) using the Silva 115NR99 database (34, 35). Operational taxonomic units (OTUs) were produced by clustering sequences with identical taxonomic assignments. The median Goods coverage score was ≥ 99.5% at the rarefaction point of 30,000 sequences.
Statistical Analyses

We calculated that 30 total subjects (15 per treatment arm) would allow for estimation of the difference between treatment groups in baseline to post-treatment change scores for TMAO within approximately 0.75 standard deviations using the formula for 95% confidence intervals for the two-sample t-test. For the analysis of demographic data, Pearson’s χ^2 statistic was used to measure the association between categorical variables among treatment groups. Continuous measurements between groups were assessed by unpaired two sample t-test. Assumptions for normality were examined, and if not satisfied, a nonparametric Wilcoxon signed rank test was used to measure the continuous outcomes between groups. For the primary study endpoint analysis, the estimated differences between the baseline and post-treatment time points were compared by paired two-sample t-test and corresponding 95% confidence intervals generated by the t-test; if assumptions were violated, an exact Wilcoxon rank sum test was implemented with 95% confidence interval generated by the Hodges-Lehmann estimation method. As a secondary analysis, an ANCOVA model with change scores as the outcome and baseline measurements as the explanatory factor was conducted. Residuals were assessed in all models to evaluate model fit to underlying assumptions. $P<0.05$ was considered statistically significant for the outcomes of interest.

For stool analyses, only participants that provided samples at both visits were included (n=12 per group). Microbiome analyses used Explicet (v2.10.5) and the R statistical software package (36). The relative abundance of each taxon was calculated as the number of 16S rRNA sequences of a given taxon divided by the total number of
16S rRNA sequences in a patient's sample. Differences in microbiome composition (i.e., beta-diversity) between subsets were assessed by a non-parametric multivariate analysis of variance (PERMANOVA) test using Bray-Curtis (weighted) and Jaccard (unweighted) dissimilarities; p-values were estimated through 1,000,000 permutations. The alpha-diversity indices were calculated in Explicet at a rarefaction point of 30,000 sequences through 1,000 permutations. Alpha-diversity indices and relative abundances of individual OTUs were compared across groups through non-parametric longitudinal analysis using the nparLD R package (37).

RESULTS

Participant Demographic Characteristics & Study Enrollment

Table 1 lists the baseline demographic characteristics for each treatment group. We observed relatively equal between-group distributions for age, race, and body mass index; however, the placebo group did demonstrate a higher percentage of female participants and a greater prevalence of both diabetes and diabetic kidney disease. A comparison of between-group differences in baseline laboratory parameters revealed a higher baseline eGFR in the placebo group, but comparable severity of proteinuria. Baseline values for mean TMAO, p-cresol sulfate, deoxycholic acid, kynurenic acid, CRP, and IL-6 were relatively equal between groups; however, mean baseline indoxyl sulfate levels were higher for the rifaximin group. Of note, IL-1β was undetectable in the serum of most study participants, so data was not reported for this cytokine.

Figure 2 outlines the participant enrollment for this study. Of the 80 potential study participants screened, 38 provided written consent for study inclusion and were
randomized. A total of 17 participants completed rifaximin therapy, while 14 participants completed placebo therapy. Reasons for participant dropout included: gastrointestinal symptoms, start of alternative antibiotic therapy, hospitalization for fall, hospitalization for mechanical bowel obstruction (unrelated to therapy). Study drug compliance based on final visit pill counts was 99% for the rifaximin group and 96% for the placebo group.

Change in Serum Concentrations of Bacterial Metabolites and Inflammatory Cytokines

Table 2 lists the mean and standard deviation for pre- and post-therapy serum concentrations of gut-derived metabolites and inflammatory cytokines. Figure 3 depicts both the individual values and the absolute change in these measurements for each study participant. We observed no statistically significant change in the serum concentration for all measured metabolites and cytokines following rifaximin or placebo therapies.

Change in Stool Bacterial Composition

Microbiome profiling using 16S rRNA gene sequencing was conducted on stool samples from baseline and post-treatment. We found rifaximin treatment reduced the richness (Chao1, P<0.05) and diversity (Shannon H, P=0.05) of bacterial taxa compared to placebo (Figure 4A), whereas evenness (Shannon H/Hmax) was not significantly altered (P=0.52). In contrast, overall community composition (beta-diversity) did not differ between treatment groups (P>0.05 for all comparisons of groups by time; Figure 4B). Nevertheless, 10 bacterial taxa, all of which were members of the Gram-
positive phyla Firmicutes or Actinobacteria, were significantly reduced (nominal P<0.05) by rifaximin treatment compared to placebo (Table 3). Three of these genera, *Clostridium*, *Turicibacter*, and *Anaerotruncus* remained significant after false-discovery rate correction (FDR<0.1).

DISCUSSION

Chronic kidney disease is an independent risk factor for cardiovascular morbidity and mortality, which may be partially explained by the presence of non-traditional risk factors for cardiovascular pathology in patients with CKD. Decrements in kidney function are accompanied by intestinal dysbiosis and defects in intestinal barrier function, which may contribute to the accumulation of bacterial endotoxins and metabolites in the bloodstream that may trigger innate immune responses or directly promote cardiovascular injury (9). As a result, there is considerable interest in exploring how manipulations of the gut microbiome in patients with CKD may impact cardiovascular risk.

The current investigation tested the impact of rifaximin on circulating concentrations of potential cardiovascular toxins derived from gut microbes. Rifaximin is an oral antibiotic that targets intestinal bacteria and is currently approved for the prevention of hepatic encephalopathy that partially results from the accumulation of gut-derived neurotoxins in patients with cirrhosis (22). Rifaximin is a unique antibiotic in that chronic administration results in limited disruption of the intestinal microbiome composition, while possibly enhancing the presence of symbiotic bacteria, such as *Bifidobacteria*, that are commonly used in probiotics due to their reported benefits to
improve intestinal barrier function and promote local anti-inflammatory cytokine production (23-25). Likewise, due to its limited systemic bioavailability, the side effect profile for rifaximin is quite favorable. We hypothesized that treatment with rifaximin could represent a unique strategy for reducing the generation of gut-derived cardiovascular toxins in CKD.

Our most important observation was that treatment with short-term rifaximin had no significant impact on circulating concentrations of the five gut-derived compounds of interest, along with several important pro-inflammatory cytokines (Table 2, Figure 3). This finding differs from observations in other studies which investigated the short-term effects of various antibiotic regimens on circulating concentrations of several of these compounds in both rodents and humans (18, 19). For example, in an observational study examining changes in indoxyl sulfate and p-cresol sulfate in response to oral vancomycin therapy in patients with end-stage kidney disease (ESKD), serum concentrations of these compounds were significantly decreased following 28 days of therapy (19). Likewise, another investigation found that one week of therapy with broad-spectrum antibiotics substantially lowered serum TMAO concentrations following an oral phosphatidylcholine challenge in healthy adults (18). While these investigations provide intriguing data to suggest the gut microbiota to be a potential therapeutic target for lowering cardiovascular risk, the primary drawback of these regimens is an inability to utilize them as chronic therapy due to either the development of bacterial resistance or other potential severe side effects.

Despite mounting evidence that suggests the gut microbiome may be an important therapeutic target for lowering cardiovascular risk in patients with CKD, a
variety of strategies to improve gut health in CKD have been largely disappointing or have led to only modest improvements in cardiovascular risk factors. Such interventions have included the use of adsorbents for binding bacterial metabolites in the gut lumen (38), prebiotics to provide beneficial nutrients (i.e. short-chain fatty acids) that promote growth of more symbiotic bacterial populations (39), probiotics that directly introduce favorable bacterial populations to the intestinal environment (40), or synbiotics that combine prebiotics and probiotics into a single therapy (41-45). To date, these investigations have primarily been small clinical trials (<50 CKD or ESKD patients) that have utilized biomarkers, rather than clinical endpoints, as the primary and secondary outcomes of interest. The one exception is a large, placebo-controlled trial investigating the impact of AST-120, an oral adsorbent, on kidney disease progression (38). This was a multinational trial that included >2,000 study participants with late-stage CKD and was conducted over approximately 4 years. Disappointingly, this trial found AST-120 to demonstrate no benefit over placebo for CKD progression or the secondary outcomes, which included death. Additionally, since this study did not include measurements of gut-derived uremic toxins, the effect of AST-120 on these compounds remains undefined.

Multiple factors may have contributed to the inability of rifaximin to lower serum concentrations of gut-derived metabolites in our study. It is plausible that rifaximin could only impact these targets with chronic therapy or with much higher daily doses; however, based on the previously mentioned literature regarding the efficacy of rifaximin in the treatment of other diseases, we suspect that the chosen duration of therapy and medication dosing were not major contributors to our negative findings. Recent
evidence suggests certain bacterial populations have differing abilities to generate these uremic toxin precursors (46), so it seems more likely that rifaximin lacks specificity for bacterial populations involved in the generation of our compounds of interest. It was not unexpected that rifaximin only resulted in subtle changes in bacterial stool populations, as this has been well-documented (25, 26). Lastly, it is plausible that rifaximin did lead to subtle reductions in the generation of the precursor metabolites of these gut-derived toxins; however, the downstream enzymatic reactions that form the final byproduct may be upregulated in CKD. In support of this potential scenario, our group has previously observed rodents with CKD to exhibit increased hepatic flavin monooxygenase (FMO) activity (47, 48), the final enzyme responsible for the conversion of trimethylamine to TMAO. Likewise, alternative experiments conducted in both rodents and humans have suggested that intestinal dysbiosis in CKD may enhance the production of p-cresol sulfate and indoxyl sulfate from their amino acid precursors (49, 50).

Our current investigation has several important strengths and limitations. Notable strengths include: the use of a placebo-control and double-blinding, a study cohort with comparable baseline demographics in many important categories (i.e. age, race, body mass index and baseline metabolite concentrations), thorough statistical analyses, the measurement of five separate bacterial metabolites using gold-standard methodology, and inclusion of data on changes in stool microbiota composition. Important limitations include: the relatively short duration of therapy, a slightly skewed distribution of several baseline demographics between treatment arms (gender, eGFR, diabetes), a lack of knowledge of dietary patterns for study participants, and the use of biomarkers as primary and secondary outcomes.
In conclusion, while rifaximin therapy clearly has benefit in treating a variety of chronic diseases characterized by intestinal pathology, our current investigation found short-term rifaximin treatment had no effect on circulating concentrations of gut-derived cardiovascular toxins in patients with CKD. Despite these negative results, the current study represents an important step to help guide the design of future investigations testing therapies targeting the gut microbiota and intestinal pathology in CKD. The current study also highlights the need for future investigations focused on better deciphering the complex interactions that exist between gut microbes, gut barrier integrity, kidney function and cardiovascular pathology. While these pathways continue to represent a promising target for lowering morbidity and mortality in this patient population, a more nuanced understanding of the interrelationships between these biologic systems will be necessary to design targeted therapies with a greater chance of successfully reducing cardiovascular pathology in CKD.

DISCLOSURES
A. Prokopienko reports grants from American Foundation for Pharmaceutical Education Fellowship Program during the conduct of the study; personal fees and other from Vertex Pharmaceuticals outside the submitted work. B. Kestenbaum reports personal fees from Reata pharmaceuticals outside the submitted work. T Nolin reports personal fees from MediBeacon, personal fees from CytoSorbents, and other from McGraw-Hill Education outside the submitted work. All remaining author have nothing to disclose.
FUNDING

Funding support for this work was provided by the NIH-NIDDK (R21DK108093 to JRS) and a Clinical Translational Science Award from the NIH-NCATS awarded to the University of Kansas Medical Center for Frontiers: The Heartland Institute for Clinical and Translational Research (UL1TR000001). DNF, CER, and DI were supported by the University of Colorado GI and Liver Innate Immune Program.

ACKNOWLEDGEMENTS

We would like to acknowledge the outstanding efforts of our study coordinators, Judy Vun and Cathy Creed, for helping to conduct patient visits and performing the collection of biospecimens.

AUTHOR CONTRIBUTIONS

C Kimber: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Writing - original draft; Writing - review and editing
S Zhang: Data curation; Investigation; Methodology
C Johnson: Data curation; Investigation; Methodology
R West: Data curation; Validation
A Prokopienko: Data curation; Formal analysis
J Mahnken: Data curation; Formal analysis; Methodology; Writing - review and editing
A Yu: Conceptualization; Investigation; Methodology; Project administration; Supervision; Writing - review and editing
All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work.
REFERENCES

Table 1. Baseline Demographics and Laboratory Values

<table>
<thead>
<tr>
<th></th>
<th>Rifaximin (n = 17)</th>
<th>Placebo (n = 14)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>62 ± 13</td>
<td>65 ± 9</td>
<td>0.52</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>6 (35%)</td>
<td>8 (57%)</td>
<td>0.22</td>
</tr>
<tr>
<td>Male</td>
<td>11 (65%)</td>
<td>6 (43%)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>African-American</td>
<td>3 (18%)</td>
<td>3 (21%)</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>14 (82%)</td>
<td>9 (64%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td></td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>31 ± 8</td>
<td>35 ± 9</td>
<td>0.16</td>
</tr>
<tr>
<td>Diabetes (type 1/2)</td>
<td>7 (41%)</td>
<td>11 (79%)</td>
<td>0.07</td>
</tr>
<tr>
<td>Etiology of CKD</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>4 (24%)</td>
<td>10 (71%)</td>
<td></td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>1 (6%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>4 (24%)</td>
<td>1 (7%)</td>
<td></td>
</tr>
<tr>
<td>Polycystic kidney disease</td>
<td>0 (0%)</td>
<td>1 (7%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>8 (47%)</td>
<td>2 (14%)</td>
<td></td>
</tr>
<tr>
<td>Baseline Laboratory Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²)</td>
<td>27.9 ± 10.6</td>
<td>34.4 ± 14.2</td>
<td>0.16</td>
</tr>
<tr>
<td>Trimethylamine N-oxide (µM)</td>
<td>18.8 ± 18.7</td>
<td>15.6 ± 11.6</td>
<td>0.74</td>
</tr>
<tr>
<td>P-cresol sulfate (µg/mL)</td>
<td>18.5 ± 10.0</td>
<td>14.4 ± 4.7</td>
<td>0.49</td>
</tr>
<tr>
<td>Indoxyl sulfate (µg/mL)</td>
<td>3.7 ± 2.0</td>
<td>2.3 ± 0.8</td>
<td>0.02</td>
</tr>
<tr>
<td>Kynurenic acid (ng/mL)</td>
<td>28.1 ± 21.3</td>
<td>19.6 ± 19.0</td>
<td>0.20</td>
</tr>
<tr>
<td>Deoxycholic acid (ng/mL)</td>
<td>372.2 ± 268.3</td>
<td>609.8 ± 384.7</td>
<td>0.14</td>
</tr>
<tr>
<td>C-reactive protein (ug/mL)</td>
<td>8.5 ± 22.1</td>
<td>8.2 ± 11.6</td>
<td>0.32</td>
</tr>
<tr>
<td>Interleukin-6 (pg/mL)</td>
<td>2.1 ± 1.6</td>
<td>2.6 ± 1.8</td>
<td>0.08</td>
</tr>
<tr>
<td>Proteinuria</td>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>None</td>
<td>6 (35%)</td>
<td>6 (43%)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>4 (24%)</td>
<td>4 (29%)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>7 (41%)</td>
<td>4 (29%)</td>
<td></td>
</tr>
</tbody>
</table>

Continuous variables presented as mean ± standard deviation

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate

Proteinuria definition: None = urine protein/creatinine ratio ≤0.3 or negative urinalysis;
Mild = urine protein/creatinine between 0.3 to 1.0 or urine dipstick of trace to 1+;
Moderate = urine protein/creatinine ratio ≥1.0 or urine dipstick >1+
Table 2. Serum Metabolite and Inflammatory Cytokine Concentrations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rifaximin Group</th>
<th>Placebo Group</th>
<th>Change</th>
<th>Pre-treatment</th>
<th>Post-treatment</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treatment</td>
<td>Post-treatment</td>
<td></td>
<td>Pre-treatment</td>
<td>Post-treatment</td>
<td></td>
</tr>
<tr>
<td>Trimethylamine N-oxide (µM)</td>
<td>18.8 ± 18.7</td>
<td>14.9 ± 10.2</td>
<td>-3.9 ± 15.4</td>
<td>15.6 ± 11.6</td>
<td>16.1 ± 13.4</td>
<td>0.5 ± 9.5</td>
</tr>
<tr>
<td>P-cresol sulfate (µg/mL)</td>
<td>18.5 ± 10.0</td>
<td>14.2 ± 8.8</td>
<td>-4.3 ± 7.6</td>
<td>14.4 ± 4.7</td>
<td>15.3 ± 8.2</td>
<td>0.9 ± 7.6</td>
</tr>
<tr>
<td>Indoxyl sulfate (µg/mL)</td>
<td>3.7 ± 2.0</td>
<td>3.8 ± 2.6</td>
<td>0.1 ± 1.4</td>
<td>2.3 ± 0.8</td>
<td>2.3 ± 0.9</td>
<td>0.0 ± 1.0</td>
</tr>
<tr>
<td>Kynurenic acid (ng/mL)</td>
<td>28.1 ± 21.3</td>
<td>28.5 ± 15.6</td>
<td>0.4 ± 10.6</td>
<td>19.6 ± 6.9</td>
<td>19.0 ± 6.1</td>
<td>-0.6 ± 2.6</td>
</tr>
<tr>
<td>Deoxycholic acid (ng/mL)</td>
<td>372.2 ± 268.3</td>
<td>332.5 ± 294.6</td>
<td>-39.7 ± 275.1</td>
<td>609.8 ± 384.7</td>
<td>433.1 ± 226.5</td>
<td>-176.7 ± 291.3</td>
</tr>
<tr>
<td>C-reactive protein (µg/mL)</td>
<td>8.5 ± 22.1</td>
<td>14.5 ± 37.4</td>
<td>6.0 ± 19.7</td>
<td>8.2 ± 11.6</td>
<td>5.7 ± 6.0</td>
<td>-2.6 ± 5.8</td>
</tr>
<tr>
<td>Interleukin-6 (pg/mL)</td>
<td>2.1 ± 1.6</td>
<td>2.4 ± 1.8</td>
<td>0.3 ± 1.1</td>
<td>2.6 ± 1.8</td>
<td>3.4 ± 2.6</td>
<td>0.8 ± 2.1</td>
</tr>
</tbody>
</table>

All measurements presented as mean ± SD
Table 3. Change in the Relative Abundance of Specific Fecal Bacteria Taxa

<table>
<thead>
<tr>
<th>Taxa</th>
<th>P²</th>
<th>FDR³</th>
<th>Arm</th>
<th>Visit 1</th>
<th>Visit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm: Clostridium</td>
<td>0.00027</td>
<td>0.020</td>
<td>Placebo</td>
<td>0.115 (0.004-0.901)</td>
<td>0.232 (0.038-0.976)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.218 (0.026-0.634)</td>
<td>0.003 (0.001-0.007)</td>
</tr>
<tr>
<td>Firm: Turicibacter</td>
<td>0.001</td>
<td>0.029</td>
<td>Placebo</td>
<td>0.014 (0.004-0.090)</td>
<td>0.097 (0.003-0.416)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.003 (0.001-0.199)</td>
<td>0.000 (0.000-0.002)</td>
</tr>
<tr>
<td>Firm: Anaerotruncus</td>
<td>0.004</td>
<td>0.096</td>
<td>Placebo</td>
<td>0.307 (0.127-1.190)</td>
<td>0.358 (0.199-0.495)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.306 (0.204-0.389)</td>
<td>0.141 (0.090-0.175)</td>
</tr>
<tr>
<td>Firm: Streptococcus</td>
<td>0.008</td>
<td>0.144</td>
<td>Placebo</td>
<td>0.156 (0.091-0.580)</td>
<td>0.384 (0.104-1.183)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.324 (0.142-1.728)</td>
<td>0.229 (0.088-0.451)</td>
</tr>
<tr>
<td>Firm: Anaerofustis</td>
<td>0.011</td>
<td>0.145</td>
<td>Placebo</td>
<td>0.007 (0.004-0.029)</td>
<td>0.014 (0.010-0.022)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.011 (0.006-0.016)</td>
<td>0.006 (0.001-0.014)</td>
</tr>
<tr>
<td>Firm: Christensenellaceae other</td>
<td>0.012</td>
<td>0.145</td>
<td>Placebo</td>
<td>0.426 (0.277-1.666)</td>
<td>0.817 (0.182-1.959)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>1.812 (0.321-7.799)</td>
<td>0.821 (0.103-2.888)</td>
</tr>
<tr>
<td>Firm: Family-XIII-Incertae-Sedis other</td>
<td>0.014</td>
<td>0.145</td>
<td>Placebo</td>
<td>0.328 (0.207-0.969)</td>
<td>0.537 (0.185-0.683)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.563 (0.308-0.766)</td>
<td>0.200 (0.061-0.339)</td>
</tr>
<tr>
<td>Firm: Eubacterium</td>
<td>0.018</td>
<td>0.165</td>
<td>Placebo</td>
<td>0.000 (0.000-0.011)</td>
<td>0.000 (0.000-0.010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.000 (0.000-0.007)</td>
<td>0.000 (0.000-0.000)</td>
</tr>
<tr>
<td>Acti: Actinomyces</td>
<td>0.029</td>
<td>0.241</td>
<td>Placebo</td>
<td>0.023 (0.006-0.041)</td>
<td>0.024 (0.016-0.048)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>0.036 (0.008-0.104)</td>
<td>0.016 (0.005-0.051)</td>
</tr>
<tr>
<td>Firm: Peptostreptococcaceae other</td>
<td>0.050</td>
<td>0.377</td>
<td>Placebo</td>
<td>0.406 (0.085-2.520)</td>
<td>0.814 (0.186-2.316)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rifaximin</td>
<td>1.343 (0.212-3.441)</td>
<td>0.041 (0.008-1.453)</td>
</tr>
</tbody>
</table>

¹ Genus-level taxa differing by treatment arm and timepoint. Taxa are listed in descending order of relative abundance. Names are pre-pended with phylum names: Firm = Firmicutes; Acti = Actinobacteria. Families that could not be classified into individual genera are designated with “other”.

² P-values for non-parametric test comparing change in relative abundance over time between placebo and rifaximin. Only taxa with p ≤ 0.05 are displayed.

³ False discovery rate corrected p-values.

⁴ Median relative abundances and interquartile ranges of taxa
Figure 1. Study design.

Baseline Measurements:
- Trimethylamine N-oxide
- P-cresol sulfate
- Indoxyl sulfate
- Kynurenic acid
- Deoxycholic acid
- Inflammatory cytokines:
 - C-reactive protein
 - Interleukin-6
 - Interleukin-1β
- Relative abundance of fecal microbiota (16S rRNA)

Day 11 Measurements:
- Trimethylamine N-oxide
- P-cresol sulfate
- Indoxyl sulfate
- Kynurenic acid
- Deoxycholic acid
- Inflammatory cytokines:
 - C-reactive protein
 - Interleukin-6
 - Interleukin-1β
- Relative abundance of fecal microbiota (16S rRNA)
Figure 2

Figure 2. Trial enrollment, randomization, and disposition.
Figure 3. Comparison of gut-derived metabolite and inflammatory cytokine changes by treatment. Pre- and post-treatment concentrations in individual study participants from the rifaximin group (first column) and placebo group (second column), along with a between-group comparison (far right column) of absolute changes for TMAO (A-C), p-cresol sulfate (D-F), indoxyl sulfate (G-I), kynurenic acid (J-L), deoxycholic acid (M-O), C-reactive protein (P-R), and interleukin-6 (S-U) (error bars represent mean ± SD).
Figure 4. **Fecal microbiota changes.** (A) Changes in fecal bacterial richness, evenness, and diversity stratified by treatment arm, assessed by a rank-based non-parametric test (nparLD); error bars represent point estimates and confidence intervals for relative treatment effects. (B) Average relative abundance of predominant bacterial genera per group at each study visit. Differences in community composition (i.e., beta-
diversity) following treatment were evaluated by PERMANOVA test (abbreviations: 1V = baseline visit, 2V = post-therapy visit, Firm = Firmicutes, Actino = Actinobacteria, n.s. = not significant).

(A) Average abundance of bacterial genera per group at each study visit depicted as %16S rRNA for each genus relative to the total 16S rRNA count per sample (abbreviations: 1V = baseline visit, 2V = post-therapy visit, Firm = Firmicutes, Verr = Verrucomicrobia, Bact = Bacteroidetes, Actino = Actinobacteria). (B) Changes in fecal bacterial richness, evenness, and diversity stratified by treatment arm (error bars represent mean ± SD).