Perspective on Nonsteroidal Mineralocorticoid Receptor Antagonism in Diabetic Kidney Disease

Jasleen K. Ghuman and Katherine R. Tuttle

Background
Diabetes is the leading cause of ESKD worldwide. It is estimated that 30% of individuals with type 1 diabetes mellitus and 40% of individuals with type 2 diabetes mellitus (T2DM) develop kidney disease (1). Deaths related to diabetic kidney disease (DKD) are higher compared with any other type of CKD (2). This excess mortality is mostly attributable to cardiovascular (CV) disease, and most patients with DKD will die without progression to ESKD (1). Thus, the unmet need for therapies that decrease the risks of DKD is enormous.

Mechanisms of Action of Mineralocorticoid Antagonism in the Diabetic Kidney

The mechanisms by which diabetes causes kidney disease are myriad. Hemodynamic changes, metabolic disturbances, proinflammatory, and profibrotic processes culminate in structural changes within the kidney. The hallmarks of DKD include glomerular hypertrophy, glomerular basement membrane thickening and mesangial expansion, glomerulosclerosis, tubulointerstitial fibrosis and inflammation, and arteriosclerosis (1). In recent years, our armamentarium to treat DKD has increased with the addition of sodium-glucose cotransporter-2 (SGLT-2) inhibitors and, most recently, with nonsteroidal mineralocorticoid receptor antagonist (MRA), finerenone. MRs are physiologic binding sites for aldosterone, cortisol, and, to a lesser extent, progesterone. They are expressed in various cells of the kidney, including epithelial cells of the collecting duct, podocytes, mesangial cells, tubulointerstitial fibroblasts, and macrophages (Figure 1). In the collecting duct, MR activation promotes sodium reuptake, potassium secretion, and fluid retention. In nonepithelial cells, the MR controls expression of many proinflammatory and profibrotic genes associated with DKD progression. The MR can be inappropriately overactivated in DKD, causing increased NADPH oxidase activity and upregulation of proinflammatory cytokines (e.g., TNF-α, IL-1β) and profibrotic proteins (e.g., connective tissue growth factor, transforming growth factor β1, plasminogen activator inhibitor 1, matrix metalloproteinase 2). The resulting damage culminates in glomerulosclerosis and progressive tubulointerstitial injury (3).

Finerenone’s binding to the MR changes its configuration such that ligands (e.g., aldosterone) are unable to bind, which prevents downstream transcription of proinflammatory and profibrotic factors (Figure 1) (3). Finerenone has differential pharmacokinetics and physiologic effects compared with steroidal mineralocorticoid antagonists that influence therapeutic actions for DKD and serum potassium. Unlike the steroidal MRAs (spironolactone and eplerenone), the nonsteroidal MRA finerenone has higher selectivity for the MR and acts as an inverse agonist, whereas steroidal MRAs act as partial agonists. Thus, finerenone blocks activation of the receptor in the absence of a ligand with more complete disruption of recruitment of transcriptional cofactors (4). At comparable natriuretic doses, finerenone provides more potent inhibition of proinflammatory and profibrotic genes in the kidney than spironolactone or eplerenone. It also has less hyperkalemia risk. Effects that favor less hyperkalemia with finerenone include its shorter half-life, absence of active metabolites, a balanced distribution of MR selectivity between kidney and heart, and less epithelial sodium channel upregulation (5). Furthermore, unlike steroidal MRAs, finerenone also binds to mutant MR S180L, a receptor that is paradoxically activated by progesterone, which is usually an MR antagonist, leading to either gestational hypertension or worsening hypertension during pregnancy. This unique property suggests its potential use in this condition (5).

Clinical Evidence
To date, there have been two notable trials for nonsteroidal MRAs. The Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) trial evaluated finerenone’s role in slowing CKD progression and reducing cardiovascular mortality in patients with T2DM and CKD (n=5674) on the background of treatment with an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB). The participants

1Division of Nephrology, University of Washington, Seattle, Washington
2Division of Nephrology, University of Washington School of Medicine, Kidney Research Institute, and Institute of Translational Health Sciences, Seattle, Washington
3Providence Medical Research Center, Providence Health Care, Spokane, Washington

Correspondence: Dr. Jasleen K. Ghuman, Division of Nephrology, University of Washington, 1959 NE Pacific St., Box 356521, Seattle, WA 98195. Email: jghuman@uw.edu

doi: https://doi.org/10.34067/KID.0007072021
had a mean (SD) eGFR of 44.3 (12.6) ml/min per 1.73 m² and median (interquartile range) urine albumin-creatinine ratio of 852 (446–1634) mg/g. There was an 18% reduction in the primary kidney disease outcome (≥40% decrease in eGFR, kidney failure, or death from kidney causes). Additionally, there was a 14% reduction in the secondary CV
<table>
<thead>
<tr>
<th>Finerenone</th>
<th>eGFR >60 ml/min per 1.73 m²</th>
<th>eGFR ≥25 to 60 ml/min per 1.73 m²</th>
<th>eGFR <25 ml/min per 1.73 m²</th>
<th>Serum Potassium ≤4.8 mEq/L</th>
<th>Serum Potassium >4.8 to <5 mEq/L</th>
<th>Serum Potassium >5.5 mEq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial daily dose</td>
<td>20 mg</td>
<td>10 mg</td>
<td>Not recommended</td>
<td>10 or 20 mg</td>
<td>10 mg</td>
<td>Withhold</td>
</tr>
<tr>
<td>Dose adjustments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor K and eGFR at baseline and 4 weeks after initiation or dose adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDA label (labeling.bayerhealthcare.com/html/products/pi/Kerendia_PI.pdf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain if eGFR does not decline >30%</td>
<td>Maintain if eGFR does not decline >30%</td>
<td>Withhold if eGFR declines ≥30%</td>
<td>Maintain if serum K ≤5.5 mEq/L</td>
<td>Increase to 20 mg if serum K ≥4.8 mEq/L</td>
<td>May start 10 mg if serum K declines to ≤5.0 mEq/L</td>
<td></td>
</tr>
<tr>
<td>Reduce to 10 mg or withhold if eGFR declines ≥30%</td>
<td></td>
<td></td>
<td>Withhold if serum K >5.5 mEq/L</td>
<td>Maintain if serum K >4.8-5.5 mEq/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May start 10 mg if serum K declines to ≤5.0 mEq/L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K, potassium; FDA, Food and Drug Administration.
outcome (death from CV causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure) (6).

The Efficacy and Safety of Finerenone in Subjects with Type 2 Diabetes Mellitus and the Clinical Diagnosis of Diabetic Kidney Disease (FIGARO-DKD) trial (n=7352) evaluated the same CV outcome as in FIDELIO-DKD as the primary outcome and the kidney disease outcome as a main secondary outcome in patients with T2DM and less severe CKD with mean (SD) eGFR 67.8 (21.7) ml/min per 1.73 m² and median (IQR) urine albumin-creatinine ratio 308 (108–740) mg/g. There was a 13% reduction in the primary CV outcome in the finerenone group compared with placebo. Although there was a reduction in the secondary kidney disease outcome in the finerenone group, it did not reach statistical significance (7).

To examine the safety and efficacy of finerenone in individuals with T2DM across a wide range of CKD, a prespecified analysis of combined FIDELIO-FIGARO trials called FIDELITY was conducted. For this pooled analysis population (n=13,026) with median follow-up of 3 years, there was a 14% decrease in the CV outcome and a 23% decrease in a composite kidney disease outcome (time to kidney failure, ≥57% sustained decline in eGFR, or kidney-related death) (8). As a result of these clinical trials, finerenone received US Food and Drug Administration approval for reducing CKD progression, CV events, and heart failure hospitalizations in those with CKD due to T2DM.

The standard-of-care for DKD is an ACE inhibitor or an ARB and an SGLT2 inhibitor. On the basis of the available evidence, finerenone can be considered an excellent choice for patients with DKD who cannot take an SGLT2 inhibitor, or for those with persistently increased albuminuria despite treatment with the standard of care. The dose and titration of finerenone depend on both eGFR and serum potassium. The full dose of finerenone is 20-mg daily. Those with an eGFR 25–60 ml/min per 1.73 m² or serum potassium 4.8–5 mEq/L, are recommended to take the lower dose of 10 mg daily, per the US Food and Drug Administration label (Table 1).

Effects on BP

It is important to note the anti-inflammatory and antifibrotic effects of nonsteroidal MRA are largely independent of BP lowering. In FIDELIO-FIGARO, the effects of finerenone on BP were nominal (6,7). In ARTS, spironolactone reduced systolic BP, whereas BP did not vary between the placebo and finerenone (9). Lesser BP lowering with finerenone has been attributed to its shorter half-life and reduced effect on natriuresis (7). Therefore, the steroidal mineralocorticoid antagonists have a more potent BP-lowering effects that make these agents preferred for treatment of hypertension.

Future Directions

With SGLT-2 inhibitors and finerenone gaining regulatory approval for treatment of DKD, we now have new therapies to actualize kidney health. ACE inhibitors and ARBs, SGLT-2 inhibitors, and finerenone work by complementary mechanisms to protect the kidneys and heart. Future research will elucidate how these therapies can be used in combination and personalized to individual patients. We foresee a future of kidney care shifting from treating advanced kidney disease and kidney failure to promoting kidney health and prevention of disease. Now we have a growing armamentarium of safe and effective therapies, and it is imperative to focus on their dissemination and implementation for millions of people worldwide with DKD who can benefit from them.

Disclosures

K. Tuttle reports current employment with Providence Health Care and the University of Washington; reports having consultancy agreements with AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly, Gilead, Goldfinch Bio, and Novo Nordisk; reports receiving research funding from Bayer and Goldfinch Bio; reports receiving honoraria from Bayer, Gilead, and Goldfinch Bio; and reports being a scientific advisor or member of CjASN, Kidney Health Initiative, Lancet Diabetes Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, and Nature Reviews Nephrology. The remaining author has nothing to disclose.
Acknowledgments

The content of this article reflects the personal experience and views of the author(s) and should not be considered medical advice or recommendation. The content does not reflect the views or opinions of the American Society of Nephrology (ASN) or Kidney360. Responsibility for the information and views expressed herein lies entirely with the author(s).

Author Contributions

J.K. Ghuman wrote the original draft; J.K. Ghuman and K.R. Tuttle conceptualized the study, and reviewed and edited the manuscript; and K.R. Tuttle provided supervision.

References

Received: November 5, 2021 Accepted: January 19, 2022