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The common conception and criticism of machine
learning (ML) in medicine is that it centers around
a “black box,” an inscrutable series of mathematical
calculations that take in data and spit out predictions,
lacking the pathobiological explanatory rigor to which
medical researchers are accustomed. Although this is
oversimplified, it is not altogether untrue. It is also not
really a problem. The true place for ML in medicine is
not in explanation, but in prediction.

The broadest definitions of ML describe processes
that take in historical data, learn salient relationships,
and use that knowledge to make predictions on new
data. To that end, ML algorithms have been present in
medicine for decades—hiding in plain sight in the form
of, for example, logistic regression and Cox propor-
tional hazard models. Although these algorithms fall
within the category of supervised ML (there is a single
target outcome, such as death, to predict), they are
somewhat special in that they are readily interpretable
and assign a “weight” to the various parameters in the
model. Indeed, researchers often over interpret these
weights, suggesting they imply a causal mechanism as
opposed to a mere association (1). Modern ML algo-
rithms reorient the central goal to flexibly predicting
outcomes for new data as closely as possible. This
allows us to ease many of the strong assumptions
behind classic models, permitting the connection be-
tween covariates and an outcome to be mediated by
any black-box algorithm, saving considerations of in-
terpretability and plausibility for post-hoc discussions
(2) In this communication, we hope to orient readers to
the techniques, mechanisms, and purpose of super-
vised ML, which has a goal of predicting outcomes.

Data Preparation
For ML strategies to work, the entire data lifecycle

must be carefully considered. The pipeline naturally
begins with data selection, which includes cohort se-
lection, but further aims to clarify which aspects of the
data will be prospectively available for implementa-
tion. For example, biomarker data often carry strong
predictive power, but their utility becomes severely
limited if the data are too expensive to gather at scale in
the future.

Next, the data need to be organized and prepro-
cessed into a format the ML algorithm is expecting.
This includes procedures commonly used in medical
research, such as deleting data-entry errors, but can
also include steps such as transforming text data into

more structured data through the use of natural lan-
guage processing (3). In medical data, missingness is
often informative (a patient who has had a lactate
measured, even if it is normal, is most likely sicker
than one who has not had a lactate measured). Some
implementations of tree-based algorithms can handle
missing values natively, but most algorithms require
some form of imputation.
The final step in preprocessing is feature engineer-

ing, which uses domain knowledge to make the learn-
ing problem easier for the algorithm. For example, we
may believe the variability of a measured value over
time is an important outcome predictor. We may then
engineer a variable such as “systolic BP variability,” on
the basis of measured systolic pressures, and allow the
model access to this constructed feature. We may also
combine features into a new entity on the basis of prior
data, as is frequently done when age, race, sex, and
creatinine are combined to generate an eGFR (4). The
general strategy is to engineer many features that
might be relevant and reduce the list during a later
feature selection step.

Data Splitting
Because ML algorithms are typically very flexible,

they perform suspiciously well on the data they were
trained on—a phenomenon known as overfitting. To
prevent this bias caused by “double dipping” with
data, the dataset must be split into training and test
sets. All modeling decisions, imputations, and param-
eter training must only be informed by the training set.
Data splitting is so crucial in ML that it performs yet

another task, model selection. There are dozens of ML
algorithms to choose from, many of which have var-
ious “hyperparameters,” tuning settings that can alter
their overall performance. An ML model is defined by
its choices of algorithm, hyperparameters, and predic-
tor variables included. To choose a model among
several candidates, the original training set is split into
training and validation subsets. In this manner, we can
experiment with different models (and variables
within models) to determine what generalizes best
in the validation subset (Figure 1).
It is at this stage of the data pipeline where feature

selection may occur. In general, models with too many
features have a higher risk of overfitting the training
data, whereas models with too few features may not
perform well. Feature selection is beneficial from both
statistical and implementational perspectives: having
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fewer features controls overfitting and reduces the number
of points of potential failure in a production pipeline.
When a set of features, an algorithm, and its hyperpara-

meters are selected, that model is retrained on the full
training set (including the validation set) and evaluated
on the test set, which has (until this point) been entirely
held out from the analysis. This methodology allows the
discovery of which model and level of flexibility is best
suited for a particular dataset and learning task.

Choice of Algorithm
Although the flexibility of ML algorithms means there are

many options to choose from, in practice different data
types work best with specific algorithm types. Relevant
medical data come in a myriad of different forms: random-
ized trials, the electronic health record, -omics data, clinical
notes, and diagnostic and pathologic imaging. We typically
choose the ML algorithm that most naturally handles the
underlying structure in our data. Tabular data describe the
simplest structure possible: each row indicates a unique
datapoint, and each column designates a predictor variable
or feature. Many easy-to-use algorithms (including logistic
regression) are designed to work with tabular data. Un-
conventional data can be made tabular, of course. For ex-
ample, images can be made tabular by assigning each pixel
location to a column. The Swiss Army knives of tabular data
are the Random Forest (5) and Boosted Trees algorithms (6),
both of which internally use a collection of decision trees.
However, generalized linear models often have acceptable
performance and are very easy to implement.
If we allow ourselves to sacrifice ease of use, algorithms

better matched to the structure of the data can have signif-
icantly better predictive performance. Auto-Regressive In-
tegrated Moving Average models are well designed for
forecasting with single feature time series, such as weight
changes during heart failure (7). More broadly, Recurrent
Neural Networks naturally handle variable-length sequen-
ces of data with many dimensions, as may be seen in the
electronic health record where some patients are having
frequent measurement of a predictor (e.g., blood glucose)
and some are not (8). Lastly, Transformer Neural Networks

and Convolutional Neural Networks are state of the art for
natural language processing and computer vision, respec-
tively (9,10). Unfortunately, neural network algorithms typ-
ically require anML expert to train and tune, and bring with
them a suite of implementational hurdles.

Model Evaluation
The critical measure of a ML approach is in how well it

makes predictions in the test set. Various evaluation metrics
are available. Selecting the right evaluation metric, just as
with any other module of the data analysis pipeline,
depends on the problem we are interested in. In medicine,
we are frequently interested in classification problems,
where a confusion matrix provides a good summarization
and visualization of key elements of a model’s performance.
It pays attention not only to what the model gets right but
also what it gets wrong. Because it is often the case that
models will deliver probabilities instead of binary outputs,
metrics that evaluate a continuous score (risk of death)
against a binary true outcome (death) are often used—the
prototypical being the well-known area under the receiver-
operator characteristic curve. For regression problems,
mean squared error is a classic evaluation metric with great
utility; however, on the basis of the dataset and learning
problem, robust alternatives may be preferable.
Separate from evaluating the rawperformance of amodel,

in clinical medicine it is imperative the models we build are
usefully adopted by physicians. Adoption by physicians
will require faith in the ML model being deployed, and the
black-box nature of the models as we have described them
thus far is not conducive to that end. Luckily, methods exist
to probe the inner workings of the model—Local Surrogate
Interpretable ML and Shapley Additive explanations values
are among the more popular techniques to probe specific
outputs the ML model delivers. By picking representative
examples, one can reconstruct the space to get a better idea
of how the model is making its decisions. However, the
techniques do not identify causal mechanisms. Causality
carries with it a much larger burden of proof and a good
deal more effort is required to tease out causal mechanisms.
One important post-hoc exploration of an ML model is to
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Figure 1. | Schematic of machine learning model training, validation, and implementation.
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assess the model for fairness; that is to say, its bias against
a particular group of people (whether defined by race, sex,
or other factors). As models are trained on real-world data,
they can learn the implicit (and explicit) biases that real-
world data reveal, learning, for example, that minority
patients may have worse outcomes in a given disease state,
and thus predicting those worse outcomes. As such, model
performance should be considered in the population as
a whole and within protected classes. Implementation sci-
entists must also consider these issues before broad dissem-
ination of models that may reinforce implicit biases.

Conclusions
Although integrating the ML toolset into the researcher’s

arsenal may not always be straightforward, the magnitude
of improvement in prediction can be well worth it. ML
approaches have a fundamentally different goal than tradi-
tional multivariable modeling and should be interpreted in
that light. Finally, although the performance of an ML model
is a critical metric, the true test of any medical technology
is whether the application of the technology benefits the
patients. This is an area that demands high-quality research.
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