Group II GBCM Can Be Used Safely for Imaging in Stage 4/5 CKD Patients: PRO

Roger A. Rodby

Debates in Nephrology

Gadolinium is a lanthanide element with paramagnetic properties that make it an excellent contrast media for MRI by significantly improving diagnostic efficacy. However, “free” gadolinium that exists as a salt, e.g., gadolinium chloride, is extremely toxic because it can interact with calcium-dependent biological processes, resulting in various cytotoxic effects. To avoid these potential toxicities, gadolinium is chelated to organic ligands. These gadolinium chelates maintain their paramagnetic properties, while essentially trapping the gadolinium and preventing it from roaming free to wreak havoc on the skin and visceral organs (NSF). Most GBCM remain in the extracellular fluid and, because the majority are not bound to protein, they are rapidly excreted by the kidneys. Delayed excretion occurs in CKD and, although GBCM are significantly removed with hemodialysis (HD), there is no evidence that strategies using HD after GBCM prevents NSF (3).

There are nine GBCM chelates that differ in the structure of the organic chelating ligand (linear or macrocytic) and net charge (ionic or nonionic) (Table 1) (4). Although there is no hard-and-fast rule relating the thermodynamic stability (ability to prevent free circulating gadolinium) to these properties, the macrocyclic GBCM are better at preventing dissociation of gadolinium from its chelate than linear GBCM. When NSF was first reported, the GBCM most commonly used were the linear group I agents gadodiamide, gadoverdisetamide, and gadopentetate. Indeed, almost all cases of NSF have been related to group I GBCM agents (often in repeated or higher-than-recommended doses), and these agents are no longer marketed or available in the United States (5,6).

By 2012 there were >1500 cases of NSF reported to the FDA, but this dropped dramatically after 2008 to single digits. The reason for this decrease is likely a combination of decreased administration in CKD, related to the FDA warning, and a decreased usage of group I GBCM (5,7). One problem is the difficulty in confidently relating NSF to a specific GBCM. Many patients with NSF did not have adequate documentation of the specific GBCM used because many of these patients presented months to years after the purported MRI study. In addition, other patients received more than one MRI study with different GBCM agents. Therefore, cause and effect needs to be limited to
unconfounded” cases in which it is certain that there was only one specific GBCM administered before the development of NSF. In fact, the GBCM group I–III designation (Table 1) was created by the American College of Radiology (ACR) on the basis of the risk of NSF using unconfounded cases, with NSF having been essentially limited to the use of one of the group I GBCM agents. Because these agents are no longer available in the United States for this reason, the issue at hand is the use of group II and III GBCM in patients with CKD stage 4/5.

To answer this, we must scrutinize the data regarding safety of the GBCM groups II and III in CKD stage 4/5. There are essentially no unconfounded cases of NSF associated with group II GBCM. It is noteworthy that all three of the GBCM group I chelates that have been linked to NSF are linear. Group II GBCM consist of four macrocyclic and one linear GBCM. So, it may come as a surprise that a linear GBCM, gadobenate, is included in group II. However, the ACR designated it as such because there is extensive data showing that there is minimal to no risk of NSF with its usage. Clearly, there is more to the development of NSF than just molecular structure. Gadobenate does have some hepatobiliary excretion that may play a role in its safety, despite it being a linear gadolinium chelate (8–10).

There are two ways to assess the risk of group II GBCM and NSF. One can look at patients with NSF and determine what GBCM was administered; alternatively, one can assess the development of NSF in patients with CKD stage 4/5 that received a group II agent. In a series of 405 patients that developed NSF, there were 23 that were related to group II exposure, however, only two of these were unconfounded (5,8,11). In a meta-analysis of 4931 group II GBCM administrations in patients with CKD stage 4/5, there were no patients with NSF, conferring a risk of 0% (10). Because the risk may be greater in CKD stage 5 than in stage 4, a sub-analysis separating these groups was performed and the upper limit of the 95% CI of risk was found to be 0.2% (1/500) for CKD stage 5D (ESKD on dialysis), on the basis of zero patients with NSF in 1849 exposed individuals with ESKD, and 0.5% (1/200) for CKD stage 5 (not receiving dialysis), also on the basis of zero patients with NSF in 732 exposed individuals. For the CKD stage 5 group as a whole, the 95% CI upper limit was 0.1% (1/1000), again on the basis of zero patients with NSF. Although these exposure numbers may be small relative to the potential risk, there is not even a signal that using group II GBCM in patients with CKD stage 4/5 puts them at any significant risk of NSF.

To conclude, although NSF seemed epidemic at one point, new cases appear to have been eliminated by avoiding the high-risk, group I, linear GBCM chelates. Lower dosing may also be playing a role. Regardless, the data do not support the avoidance of group II GBCM in patients with CKD stage 4/5, who would benefit from GBCM over standard imaging using IBCM. There is also no role for increased or accelerated HD after GBCM administration.

Table 1. American College of Radiology GBCM group designations

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Structure</th>
<th>ACR Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadodiamide</td>
<td>Linear nonionic</td>
<td>I</td>
</tr>
<tr>
<td>Gadoversetamide</td>
<td>Linear nonionic</td>
<td>I</td>
</tr>
<tr>
<td>Gadopentetate dimeglumine</td>
<td>Linear ionic</td>
<td>I</td>
</tr>
<tr>
<td>Gadobenate</td>
<td>Linear ionic</td>
<td>II</td>
</tr>
<tr>
<td>Gadoteridol</td>
<td>Macroyclic nonionic</td>
<td>II</td>
</tr>
<tr>
<td>Gadobutrol</td>
<td>Macroyclic nonionic</td>
<td>II</td>
</tr>
<tr>
<td>Gadodextrate meglumine</td>
<td>Macroyclic ionic</td>
<td>II</td>
</tr>
<tr>
<td>Gadodextrate disodium</td>
<td>Linear ionic</td>
<td>III</td>
</tr>
</tbody>
</table>

GBCM, gadolinium-based contrast media; ACR, American College of Radiology.

Primum non nocere is a basic tenet of medicine, but it must be based on facts and not irrational fear.

Disclosures
The author has nothing to disclose.
Funding
None.

Acknowledgments
The content of this article reflects the personal experience and views of the author(s) and should not be considered medical advice or recommendations. The content does not reflect the views or opinions of the American Society of Nephrology (ASN) or Kidney360. Responsibility for the information and views expressed herein lies entirely with the author(s).

Author Contributions
R.A. Rodby wrote the original draft.

References

Received: September 28, 2020 Accepted: December 2, 2020