Editorials

1038 Donor-Derived Cell-Free DNA: Is It All the Same? The Jury Is Still Out
Neetika Garg
See related article on page 1118

1040 Moving Nephrology Genetics into Clinical Care
Matthew B. Lanktree
See related article on page 1099

Original Investigations

Chronic Kidney Disease

1042 Kidney Function, Self-Reported Symptoms, and Urine Findings in Nicaraguan Sugarcane Workers
Zoe E. Petropoulos, Rebecca L. Laws, Juan José Amador, Damaris López-Pilarte, James S. Kaufman, Daniel E. Weiner, Oriana Ramírez-Rubio, Daniel R. Brooks, Michael D. McClean, and Madeleine K. Scammell

Clinical Nephrology

1052 Internal Medicine Residents’ Perceptions of Nephrology as a Career: A Focus Group Study
Natalie Beck, Seth Furgeson, Michel Chonchol, and Jessica Kendrick

1060 The Nephrology Immersion Classroom for Internal Medicine Residents
John K. Roberts, Norman W. Seay, Dinushika Mohottige, Aimee Zaas, and Myles Wolf

Cystic Kidney Disease

1068 Adult Inactivation of the Recessive Polycystic Kidney Disease Gene Causes Polycystic Liver Disease
Whitney Besse, Charlotte Roosendaal, Luigi Tuccillo, Sounak Ghosh Roy, Anna-Rachel Gallagher, and Stefan Somlo

Dialysis

1077 How Hemodialysis Patients Perceive the SARS-CoV-2 Health Crisis: Lessons from Austria
Tamara Davídovics, Hannelore Sprenger-Mähr, Armin Abbasi-Nik, Emanuel Zitt, and Karl Lhotta

1083 Parathyroid Hormone Serum Levels and Mortality among Hemodialysis Patients in the Gulf Cooperation Council Countries: Results from the DOPPS (2012–2018)

1091 Calcimimetic Use in Dialysis-Dependent Medicare Fee-for-Service Beneficiaries and Implications for Bundled Payment

Genetics

1099 From Theory to Reality: Establishing a Successful Kidney Genetics Clinic in the Outpatient Setting
Andrew L. Lundquist, Renee C. Pelletier, Courtney E. Leonard, Winfred W. Williams, Katrina A. Armstrong, Heidi L. Rehm, and Eugene P. Rhee
See related editorial on page 1040
1107 Functionally Essential Tubular Proteins Are Lost to Urine-Excreted, Large Extracellular Vesicles during Chronic Renal Insufficiency
Ryan J. Adam, Mark R. Paterson, Lukus Wardecke, Brian R. Hoffmann, and Alison J. Kriegel

1118 Donor-Derived Cell Free DNA: Is It All the Same?
Joseph K. Melancon, Ali Khalil, and Mark J. Lerman
See related editorial on page 1038

1124 Moving beyond COVID-19 Surge—Caring for Patients with Kidney Disease throughout the Pandemic

1128 Assessing Polycystic Kidney Disease in Rodents: Comparison of Robotic 3D Ultrasound and Magnetic Resonance Imaging

1137 Global Dialysis Perspective: United States
Yun Han and Rajiv Saran

1143 Global Dialysis Perspective: India
Joyita Bharati and Vivekanand Jha

1148 Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm
Michael R. Lattanzio and Matthew R. Weir

1157 Organelle Stress and Crosstalk in Kidney Disease
Sho Hasegawa and Reiko Inagi

1165 How To Build a Successful Urgent-Start Peritoneal Dialysis Program
Nilum Rajora, Shani Shastri, Gulzar Pirwani, and Ramesh Saxena

1178 Abnormal Kidney Ultrasound in a Transplant Patient with AKI
Janina Paula T. Sy-Go, Sorkko Thirunavukkarasu, and Andrew J. Bentall

1180 Abdominal Pain and Fever in an Elderly Patient with Diabetes Mellitus
Prakash Khetan, Vishal Ramteke, and Jitendra Ashtekar

1182 Abdominal Distention in a Patient on Peritoneal Dialysis
John Wing Li and Kamal Sud

Cellular location and type of LRT-EV proteins identified through proteomic analysis. First column: Proteomic analysis identified the plasma membrane transporter megalin in LRT-EVs. Representative immunohistochemistry of kidney tissues collected 10 weeks post-surgery show presence of megalin (red) localized at the base of the brush border on the apical membrane in sham-operated (sham) rats. In 5/6Nx rats megalin can be seen in LRT-EVs that are within the tubule lumen and LRT-EVs emerging from the proximal tubule cells. The distribution of megalin is diffuse (yellow) or absent in some tubular cells. Image on bottom is an inset from center image. DAPI, blue; autofluorescence at 455 nm (green); Cal. bar = 100 μm. Second column: Proteomic analysis failed to detect NHE3 in LRT-EVs. Immunohistochemistry of kidney tissue collected 10 weeks post-surgery show the presence of NHE3 (red) in sham and 5/6Nx rat proximal tubule epithelial, but not in LRT-EVs. DAPI, blue; autofluorescence at 455 nm (green); Cal. Bar = 50 μm. Adapted from Figure 2 of “Functionally Essential Tubular Proteins Are Lost to Urine-Excreted, Large Extracellular Vesicles during Chronic Renal Insufficiency” by Ryan J. Adam, Mark R. Paterson, Lukus Wardecke, Brian R. Hoffmann, and Alison J. Kriegel. KIDNEY360 1: 1107–1117, 2020. doi: 10.34067/KID.0001212020.