Skip to main content

Main menu

  • Home
  • Content
    • Early Access
    • Current Issue
    • Kidney360 Podcasts
    • Subject Collections
    • Archives
    • ASN Meeting Abstracts
    • Saved Searches
  • Clinical Images
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • More
    • About Kidney360
    • Advertising
    • Disqus Commenting
    • Email Alerts
    • Feedback
    • Reprint Information
  • ASN Kidney News
  • Other
    • JASN
    • CJASN
    • Kidney News Online
    • American Society of Nephrology

User menu

Search

  • Advanced search
American Society of Nephrology
  • Other
    • JASN
    • CJASN
    • Kidney News Online
    • American Society of Nephrology
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Early Access
    • Current Issue
    • Kidney360 Podcasts
    • Subject Collections
    • Archives
    • ASN Meeting Abstracts
    • Saved Searches
  • Clinical Images
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • More
    • About Kidney360
    • Advertising
    • Disqus Commenting
    • Email Alerts
    • Feedback
    • Reprint Information
  • ASN Kidney News
  • Visit ASN on Facebook
  • Follow Kidney360 on Twitter
  • Community Forum
  • Kidney360 RSS
Original InvestigationsChronic Kidney Disease

Estimating Kidney Failure Risk Using Electronic Medical Records

Felipe S. Naranjo, Yingying Sang, Shoshana H. Ballew, Nikita Stempniewicz, Stephan C. Dunning, Andrew S. Levey, Josef Coresh and Morgan E. Grams
Kidney360 March 2021, 2 (3) 415-424; DOI: https://doi.org/10.34067/KID.0005592020
Felipe S. Naranjo
1Division of Nephrology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
2Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yingying Sang
3Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
4Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
5OptumLabs Visiting Fellow, Cambridge, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shoshana H. Ballew
3Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
4Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikita Stempniewicz
6American Medical Group Association, Alexandria, Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephan C. Dunning
7OptumLabs, Cambridge, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew S. Levey
8Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Josef Coresh
3Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
4Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Morgan E. Grams
2Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
3Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data Supps
  • Info & Metrics
  • View PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Additional Files
  • Figure1
    • Download figure
    • Open in new tab
    • Download powerpoint

Tables

  • Figures
  • Additional Files
    • View popup
    Table 1.

    Baseline characteristics of patients with eGFR <60 ml/min per 1.73 m2, by health care organization

    Health Care Organization IdentificationNAge (mean, SD)% FemaleeGFR (mean, SD)% Diabetes% Hypertension
    118,27371 (10)6047 (11)4085
    228,69074 (10)6147 (11)3687
    314,56072 (10)6248 (11)3172
    417,83373 (10)6147 (11)3785
    512,34273 (10)5849 (10)3580
    683,26671 (11)6148 (11)2967
    7930973 (10)6147 (10)3588
    810,16071 (10)5847 (11)4388
    916,46365 (12)5449 (11)3275
    1065,99071 (11)6047 (11)4086
    11623962 (12)5645 (13)6185
    1217,07873 (10)6247 (11)3583
    1316,79473 (9)5948 (10)4586
    1420,97771 (12)5746 (12)3168
    1512,44275 (9)5546 (12)3484
    1611,39674 (10)5646 (12)3773
    1744,09272 (10)6147 (11)3680
    1815,77471 (11)5845 (12)3079
    1913,05772 (10)5147 (12)3067
    2032,05573 (10)6148 (11)3988
    2121,40871 (12)5545 (13)23
    2214,06871 (10)6046 (12)3780
    2317,83173 (9)5848 (11)3274
    2438,39071 (11)5948 (11)3176
    2514,96772 (10)6147 (11)3283
    2612,12272 (11)5544 (13)2240
    2723,95472 (10)5947 (11)3580
    2828,11472 (11)5946 (12)2966
    2910,28173 (11)6248 (11)3573
    3023,11072 (10)5947 (11)3779
    3118,66971 (10)6047 (11)2153
    3222,84772 (12)5447 (12)717
    33944373 (10)6146 (11)2960
    34759167 (13)5346 (13)3066
    35103,58372 (10)6148 (10)3583
    36104,53672 (11)5846 (12)2453
    3711,91670 (11)5744 (14)3670
    3812,58374 (10)5748 (11)4287
    3914,09670 (12)5845 (13)613
    Total976,29972 (11)5947 (11)3271
    • View popup
    Table 2.

    Proportion with albumin-creatinine ratio testing according to “look-back” window

    Health Care Organization IdentificationNAlbumin-Creatinine Ratio Within 1 yr, N (%)Albumin-Creatinine Ratio Within 2 yr, N (%)Albumin-Creatinine Ratio Within 3 yr, N (%)
    118,2733393 (18.6)4446 (24.3)4996 (27.3)
    228,6904242 (14.8)5515 (19.2)6065 (21.1)
    314,5602342 (16.1)2816 (19.3)3044 (20.9)
    417,8332425 (13.6)3044 (17.1)3356 (18.8)
    512,3421631 (13.2)2564 (20.8)3143 (25.5)
    683,26616,522 (19.8)20,734 (24.9)21,403 (25.7)
    793091055 (11.3)1304 (14.0)1335 (14.3)
    810,160848 (8.4)1061 (10.4)1170 (11.5)
    916,4632775 (16.9)3357 (20.4)3586 (21.8)
    1065,9908374 (12.7)11,185 (17.0)12,624 (19.1)
    1162391712 (27.4)2174 (34.9)2420 (38.8)
    1217,0783169 (18.6)4105 (24.0)4534 (26.6)
    1316,7942281 (13.6)2945 (17.5)3209 (19.1)
    1420,9772884 (13.8)3722 (17.7)4315 (20.6)
    1512,4421777 (14.3)2144 (17.2)2331 (18.7)
    1611,3961588 (13.9)2101 (18.4)2308 (20.3)
    1744,0927708 (17.5)9213 (20.9)9843 (22.3)
    1815,7741150 (7.3)1550 (9.8)1671 (10.6)
    1913,057822 (6.3)1050 (8.0)1102 (8.4)
    2032,0557263 (22.7)8640 (27.0)9076 (28.3)
    2121,4081758 (8.2)2365 (110.1)2753 (12.9)
    2214,068709 (5.0)891 (6.3)960 (6.8)
    2317,83112,169 (68.3)13,003 (72.9)13,154 (73.8)
    2438,3903201 (8.3)4206 (11.0)4985 (13.0)
    2514,9672540 (17.0)2987 (20.0)3092 (20.7)
    2612,1221615 (13.3)1760 (14.5)1760 (14.5)
    2723,9543087 (12.9)3881 (16.2)4262 (17.8)
    2828,1142496 (8.9)2795 (9.9)2856 (10.2)
    2910,2811139 (11.1)1209 (11.8)1210 (11.8)
    3023,1102263 (9.8)2492 (10.8)2495 (10.8)
    3118,669978 (5.2)1086 (5.8)1121 (6.0)
    3222,8473380 (14.8)4129 (18.1)4592 (20.1)
    3394431060 (11.2)1299 (17.8)1415 (15.0)
    347591926 (12.2)1249 (16.4)1419 (18.7)
    35103,58313,458 (13.0)16,968 (16.4)18,355 (17.7)
    36104,53610,239 (9.8)12,189 (11.7)13,391 (12.8)
    3711,9161499 (12.6)1932 (16.2)2015 (16.9)
    3812,5833410 (27.1)4109 (32.7)4503 (35.8)
    3914,0961798 (12.8)2141 (15.2)2179 (15.5)
    Total976,299141,686 (14.5)174,360 (17.9)188,048 (19.3)
    • View popup
    Table 3.

    Characteristics of patients, on the basis frequency and type of albuminuria testing within 3 yr

    CharacteristicGroup 1: Has Albumin-Creatinine Ratio TestGroup 2: Has Protein-To-Creatinine Ratio TestGroup 3: Has Proteinuria Dipstick TestGroup 4: Has No Albuminuria Test
    N (%)188,048 (19)16,130 (2)354,627 (36)417,494 (43)
    Age, yr71 (10)69 (13)72 (11)72 (11)
    Female sex (%)55486258
    eGFR (ml/min per 1.73 m2)46 (11)37 (13)47 (11)47 (11)
    Median (IQR) ACR/PCR/dipstick level, (mg/g, mg/g, category)21 (8–79)210 (100–670)NegativeNA
    Diabetes75.5%33.8%20.1%21.2%
    Hypertension84.7%79.0%71.3%63.8%
    ESKD events (N)89722045797610,660
    ESKD incidence, events per 1000 person-yr, 95% CI10.49 (10.27–10.71)31.95 (30.60–33.37)5.31 (5.19–5.42)5.98 (5.87–6.09)
    Death incidence, events per 1000 person-yr, 95% CI60.55 (60.03–61.08)80.47 (78.35–82.65)74.93 (74.50–75.38)68.32 (67.94–68.71)
    • Group 1, available ACR test. Group 2, available PCR, but no available ACR. Group 3, available urine dipstick protein level measurement, but no available ACR or PCR. Group 4, no form of albuminuria measured. 95% CI, 95% confidence interval IQR, interquartile range; ACR, albumin-creatinine ratio; PCR, protein-to-creatinine ratio.

    • View popup
    Table 4.

    C-statistics in groups with albumin-creatinine ratio, protein-to-creatinine ratio/dipstick, and no urine testing within 3 yr

    Health Care Organization IdentificationGroup 1: Has Albumin-Creatinine Ratio TestGroup 2: Has Protein-To-Creatinine Ratio TestGroup 3: Has Proteinuria Dipstick TestGroup 4: Has No Albuminuria Test
    Three-variableFour-variableThree-variableFour-variableThree-variableFour-variableThree-variable
    10.8400.8880.8940.9220.872
    20.8600.9120.9020.9170.915
    30.7940.8360.9150.9350.865
    40.8860.9090.9110.9290.931
    50.8690.907
    60.8560.8940.7900.8040.8760.8880.885
    70.8660.9200.900
    80.9050.9210.9200.9400.911
    90.8520.8980.931
    100.8260.8610.8400.8640.8760.8950.887
    110.8620.9190.8400.8630.877
    120.8590.8920.9250.9370.869
    130.8150.8790.8670.8880.8670.892
    140.8430.8840.8450.8770.8510.8410.903
    150.8940.9120.8870.9000.923
    160.8670.9000.8030.8300.9160.9160.889
    170.8640.9030.8850.9020.901
    180.8710.9250.8400.8660.926
    190.8800.8970.8170.8230.8550.8640.897
    200.8670.9090.8980.9140.921
    210.8540.8910.8790.8870.922
    220.8120.8490.8980.9060.881
    230.8670.8970.9020.9170.960
    240.9030.9300.9010.9180.868
    250.8910.9320.8920.9130.927
    260.8330.8770.8170.8240.882
    270.8510.9050.8970.9080.862
    280.8380.8890.7630.7890.8510.8680.867
    290.8520.8760.8840.8940.889
    300.7620.8540.8790.8890.898
    310.8440.8850.9040.9150.906
    320.8420.8820.8770.8680.921
    330.8600.8950.8350.8330.930
    340.8700.9150.8430.8500.932
    350.8290.8810.8520.8840.8590.8810.889
    360.8440.8830.8610.8780.881
    370.8330.8680.7940.8140.8870.9010.929
    380.8970.930
    390.8450.8930.8690.8880.887
    Median C-statistic0.8560.8950.8280.8470.8850.8970.899
    Meta-analyzed difference in C-statisticMeta-analyzed difference in C-statisticMeta-analyzed difference in C-statistic
    0.039 (0.036–0.043)0.022 (0.017–0.026)0.012 (0.010–0.015)
    • Group 1, available ACR test. Group 2, available PCR, but no available ACR. Group 3, available urine dipstick protein level measurement, but no available ACR or PCR. Group 4, no form of albuminuria measured. Bold indicates that the difference in C-statistic between the 4-variable and 3-variable KFRE in the group is statistically significant. ACR, albumin-creatinine ratio; PCR, protein-to-creatinine ratio.

Additional Files

  • Figures
  • Tables
  • Supplemental Data

    • Supplemental Data
PreviousNext
Back to top

In this issue

Kidney360: 2 (3)
Kidney360
Vol. 2, Issue 3
25 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • About the Cover
  • Index by author
View Selected Citations (0)
Print
Download PDF
Sign up for Alerts
Email Article

Thank you for your interest in spreading the word on American Society of Nephrology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Estimating Kidney Failure Risk Using Electronic Medical Records
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Estimating Kidney Failure Risk Using Electronic Medical Records
Felipe S. Naranjo, Yingying Sang, Shoshana H. Ballew, Nikita Stempniewicz, Stephan C. Dunning, Andrew S. Levey, Josef Coresh, Morgan E. Grams
Kidney360 Mar 2021, 2 (3) 415-424; DOI: 10.34067/KID.0005592020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Estimating Kidney Failure Risk Using Electronic Medical Records
Felipe S. Naranjo, Yingying Sang, Shoshana H. Ballew, Nikita Stempniewicz, Stephan C. Dunning, Andrew S. Levey, Josef Coresh, Morgan E. Grams
Kidney360 Mar 2021, 2 (3) 415-424; DOI: 10.34067/KID.0005592020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Disclosures
    • Funding
    • Supplemental Material
    • Author Contributions
    • References
  • Figures & Data Supps
  • Info & Metrics
  • View PDF

More in this TOC Section

Original Investigations

  • Does Whom Patients Sit Next to during Hemodialysis Affect Whether They Request a Living Donation?
  • Machine Learning for Prediction of Patients on Hemodialysis with an Undetected SARS-CoV-2 Infection
  • Mindfulness-based Virtual Reality Intervention in Hemodialysis Patients: A Pilot Study on End-user Perceptions and Safety
Show more Original Investigations

Chronic Kidney Disease

  • Patiromer and Spironolactone in Resistant Hypertension and Advanced CKD: Analysis of the Randomized AMBER Trial
  • The Impact of CKD on Perioperative Risk and Mortality after Bariatric Surgery
Show more Chronic Kidney Disease

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

Related Articles

  • Google Scholar

Keywords

  • chronic kidney disease
  • albuminuria
  • electronic health records
  • kidney failure

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • Kidney360
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About Kidney360
  • Kidney360 Email Alerts
  • Kidney360 Podcasts
  • Kidney360 RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Disqus Code of Conduct
  • Disqus Information
  • Feedback
  • Follow on Twitter
  • Subscribe to JASN and CJASN

© 2021 American Society of Nephrology

Online ISSN - 2641-7650

Powered by HighWire